Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 259-263  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/9(1)263  
Long-Term Combined Effects of Crude Oil and  
Dispersant on Sediment Bacterial Community  
Mohammed Al-Jawasim*  
Department of Environmental Science/ University of Al-Qadisiyah, Al-Dewaniya, 58014, Iraq  
Received: 16/08/2020  
Accepted: 13/11/2020  
Published: 20/03/2021  
Abstract  
To better understand long-term combined effects of crude oil and dispersant on bacterial community, sediments microcosms were  
set up in triplicates and treated with dispersant (Corexit 9500A), crude oil, and Corexit 9500A plus crude oil. After 60 days exposure,  
there was a significant change in the bacterial community structure in all treatments. The shift in the bacterial community structure in  
Corexit 9500A plus crude oil treatment was considerably different from those by either Corexit 9500A or crude oil. DNA sequence  
analysis showed that Hydrocarboniphaga effuse, Parvibaculum lavamentivorans,and Alicyclobacillus ferrooxydans were the major  
bacterial species in crude oil treatment. Pandoraea thiooxydans, Janthinobacterium sp. and Hyphomicrobium nitrativorans were the  
most dominant species in Corexit 9500A treatment. The species Janthinobacterium sp., Parvibaculum lavamentivorans, and Dyella sp.  
were enriched in Corexit 9500A plus crude oil treatment. The majority of the detected species were hydrocarbons degraders. The study  
showed that Corexit 9500Aaddition enhanced the biodegradation rate by increasing the diversity and richness of hydrocarbons degrading  
species. Corexit A9500 application should be considered during crude oil spills to evaluate environmental impacts.  
Keywords: Corexit A9500, crude oil, combined effects, bacterial community structure, hydrocarbons  
1
oil bioavailability to indigenous oil degrading microbes and  
1
Introduction  
consequently increase crude oil biodegradation rate [1, 2]. A  
study found the number of hydrocarbon-degrading  
microorganisms and the total carbon mineralization are being  
increased by the chemical dispersant Corexit 9500A [12].  
Another study demonstrated that approximately 60% of crude  
oil was degraded after Corexit 9500A treatment [13]. It was  
found that the biodegradation rate of crude oil increased in  
response to Corexit 9500A addition [11]. The short exposure  
period (7 days) to crude oil and Corexit 9500A plus crude oil  
exert no impact on the bacterial community [14]. The  
objectives of this research are to examine the combined effects  
of Corexit 9500Aplus crude oil after 60 days incubation and to  
identify the bacterial taxa that dominate the bacterial  
community under these conditions.  
Crude oil is a complex mixture of various organic and  
inorganic compounds including hydrocarbons, resins, and  
asphaltenes. Crude oil is released into marine environments by  
natural and anthropogenic activities, which contribute up to  
3% of entire oil spills [1]. Oil spills severely impact  
ecosystems and cause long-term environmental damages [2],  
ranging from molecular to organismal levels [3].  
5
Bioremediation is  
a
process that employs natural  
microorganisms to break down complex toxic compounds to  
less toxic or non-toxic compounds. Microorganism uses  
pollutants as sole sources of energy and consequently break  
them from toxic compounds to benign wastes that have no  
harmful effects on the environment. Due to its high selectivity  
and specificity of removing pollutants, cost efficiency, and less  
installing requirements, the bioremediation process is preferred  
over other physiochemical methods. Pollutants generally  
increase the microbial lag phase and therefore reduce the  
biodegradation rate [4]. Bioremediation is affected by a number  
of factors such as presence of appropriate biodegrading-  
organisms, the concentration of contaminants, and nutrients  
bioavailability temperature, oxygen, pH, degree of acclimation,  
cellular transport properties and chemical structure of the  
compound [5]; therefore, bioremediation occurs on a relatively  
slow rate [6].  
Dispersant application is one of the strategies that have  
been employed since the 1950s to mitigate oil spill impacts on  
aquatic environments [7]. Dispersants are mixtures of  
surfactants, solvents, and other compounds [8, 9]. Dispersants  
break up oil slicks into micron-sized droplets by reducing the  
interfacial tension at oil-water interfaces [9, 10, 11]. The  
droplets spread in the water column inhibiting surface oil slicks  
formation. Breaking down oil slicks into tiny droplets increases  
2 Materials and Methods  
2.1 Study area  
The study area was a salt marsh at the eastern side of Lake  
Pontchartrain, Louisiana (N30º 08.782’ W89º 44.665’). The  
marsh was dominated by two marsh plants species Spartina  
patens and S. alterniflora. After removing the surface plants,  
the top 30 cm of sediments was collected. The sample was kept  
in sterilized polyethylene containers, sent on ice to the Troy  
University/Department of Biological and Environmental  
Science's laboratory, and stored at 4°C before analysis.  
2.2 Chemical analyses  
Chemical analyses were performed to evaluate the factors  
that might influence the bacterial community. The chemical  
analyses were done at the Central Analytical Instruments  
research Laboratory, Louisiana State University (Baton Rouge,  
LA). Metals, anions and total phosphorous were analyzed by  
Corresponding author: Mohammed Al-Jawasim, Department of Environmental Science/ University of Al-Qadisiyah, Al-Dewaniya,  
8014, Iraq; Tel: 009647832672007; E-mail: mohammedaljawasim@qu.edu.iq  
5
259  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 259-263  
EPA methods 200.7, 300.0 and 365.3, respectively (Table 1).  
Table 1. Chemical characteristics of the salt marsh sediment  
addressing the factors that might affect the bacterial  
community.  
incubated aerobically at 30 °C. The microcosms were sampled  
after 60 days of incubation. By using the PowerSoil DNA  
Isolation Kit (MoBio Laboratories, Carlsbad, CA), total DNA  
was extracted from 0.3 gm of sediments and stored at –20 °C  
prior to analysis.  
Factor  
Value  
ND*  
0.1  
2
.4 Polymerase chain reaction (PCR)  
Nested PCR was implemented to amplify the total bacterial  
Aluminum (mg/kg)  
Antimony (mg/kg)  
Arsenic (mg/kg)  
Barium (mg/kg)  
Beryllium (mg/kg)  
Boron (mg/kg)  
Cadmium (mg/kg)  
Calcium (mg/kg)  
Carbon (%)  
16S rRNA gene. The primers 27F and 1522R were used in the  
6
first round of the reaction. The final volume of the PCR mixture  
was 50 μL containing 10 pmol of 27F and 1522R primers, 1 μL  
of template DNA, 0.25 mM of dNTP, 5 μL of 10x Green Taq  
PCR buffer, and 1 U of Green Taq DNA polymerase  
12.7  
0.7  
28.8  
0.9  
(
GenScript, Piscataway, NJ). PCR was performed with a DNA  
thermal cycler (GeneAmp PCR System 2700, Applied  
Biosystems, Foster City, CA) at an initial temperature of 94 °C  
for 5 minutes, followed by 30 cycles of 94 °C for 20 seconds,  
1058.4  
7.202  
7947.47  
17.5  
5
55 °C for 45 seconds, and 72 °C for 45 seconds. A final  
Chloride (mg/L)  
Chromium (mg/kg)  
Cobalt (mg/kg)  
Copper (mg/kg)  
Fluoride (mg/L)  
Iron (mg/kg)  
elongation step was carried out at 72 °C for 7 minutes. The  
primers 341F and 534R were used in the second round of the  
reaction to amplify the V3 region of the 16S rRNA gene [15].  
About 1 μL of the PCR products of the first round were used as  
a template for the second-PCR-round. PCR constituents and  
conditions were the same as described above. The resulting  
PCR products were confirmed by an agarose gel  
electrophoresis.  
117.7  
3.97  
19913.5  
37.2  
5563  
123.6  
ND  
Lead (mg/kg)  
Magnesium (mg/kg)  
Manganese (mg/kg)  
Molybdenum (mg/kg)  
Nickel (mg/kg)  
Nitrate (mg/L)  
Nitrite (mg/L)  
2.5 Denaturing gradient gel electrophoresis (DGGE)  
PCR products of the second-round were separated on an 8%  
polyacrylamide gel with a 40-60% denaturing gradient of urea  
in 1.0x TAE buffer by a Bio-Rad DCodeTM Universal  
Mutation Detection System (Bio-Rad Laboratories, Hercules,  
CA). Astacking gel (a non-denaturing polyacrylamide gel) was  
prepared to make sample-loading wells on top of the  
denaturing-gradient gel. Forty five μL of PCR products were  
loaded into the wells. The electrophoresis process was  
conducted at 60 °C at 40 V for 15 hours. After electrophoresis,  
the gels were stained with ethidium bromide for 15 minutes and  
photographed on a UV transilluminator (Fisher Scientific,  
Pittsburgh, PA).  
15.3  
11.38  
21.74  
0.433  
7.06  
0.03  
605  
Nitrogen (%)  
pH  
Phosphate (mg/L)  
Phosphorus (mg/kg)  
Potassium (mg/kg)  
Selenium (mg/kg)  
Silicon (mg/kg)  
Sodium (mg/kg)  
Sulfate (mg/L)  
Sulfur (mg/kg)  
Thallium (mg/kg)  
Tin (mg/kg)  
2364.8  
ND  
2
.6 DNA sequencing  
Ten DGGE bands were excised from the gel and incubated  
776.8  
808  
separately overnight at 4°C with 50 μL of distilled water to  
allow the DNAs to be released into the water. PCR was  
performed to re-amplify the eluted DNA. PCR constituents and  
conditions were the same as described in the first-round PCR  
except that the reaction was carried out for 35 cycles. The purity  
and position of the re-amplified DNAs were verified by  
conducting the DGGE analysis. If necessary, the DGGE bands  
were re-excised and the PCR-DGGE process was repeated until  
all the samples showed a single DGGE band. The resulting  
PCR products were purified with the MEGAquickspin Total Kit  
109.56  
5304.7  
ND  
0.4  
Vanadium (mg/kg)  
Yttrium (mg/kg)  
Zinc (mg/kg)  
36.7  
13  
(
iNtRON Biotechnology Inc., Korea) for DNAsequencing. The  
84.5  
purified DNAs were outsourced to the Genewiz Inc. (Genewiz  
Inc., South Plainfield, NJ), and each sample was sequenced  
separately with forward and reverse primers.  
*
ND: not detected  
2
.3 Microcosms preparation and DNA extraction  
The crude oil Western Texas Intermediate (WTI) was  
2
.7 Data analysis  
The DGGE image was analyzed by PyElph software  
purchased from Texas Raw Crude (Midland TX). The  
dispersant Corexit 9500A was provided by the Nalco Energy  
Services (Sugar Land TX). Four sets of microcosms, (1)  
untreated control, (2) treated with 0.2% (v/w) Corexit 9500A,  
(
version 1.4) to examine DGGE bands profiles and to construct  
a phylogenetic tree using the unweighted pair group method  
with arithmetic mean (UPGMA) algorithm. The DNA  
sequences were analyzed using the Chromas Lite (version  
(
3) treated with 2% (v/w) WTI, and (4) treated with 0.2%  
Corexit 9500A and 2% WTI were prepared in triplicates. One  
gram of sediment was aseptically transferred into sterile 2 mL  
tubes, sealed with a Teflon-coated cap. Corexit 9500A and  
crude oil were added by a micropipette. The microcosms were  
2
.1.1) to assess their quality. In order to confirm queries  
identity, the basic local alignment search tool algorithim  
BLAST) was used to search homologus sequences in the  
(
260  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 259-263  
T
GenBank DNA libraries.  
Hydrocarboniphaga effusa strain AP103 , Parvibaculum  
lavamentivorans strain DS-1  
T
and Alicyclobacillus  
ferrooxydans isolate YE3-D4-31i-CH, respectively (table 2).  
Hydrocarboniphaga effusa strain AP103 is a hydrocarbon  
3
Results and Discussion  
T
3
.1 Corexit 9500A and crude oil effects on the bacterial  
degrading bacterium, and it has been isolated from crude oil  
contaminated environments. This strain degrades particularly  
n-alkanes forms of hydrocarbons, and the genomic analysis of  
this strain has confirmed presence two genes encoding alkane  
omega monooxygenase enzymes (Alk-like enzymes) involving  
in alkanes degradation [20]. Parvibaculum lavamentivorans  
community structure  
The structure of the bacterial community in the salt marsh  
sediments was significantly shifted after 60 days exposure to  
Corexit 9500A, crude oil, and Corexit 9500A plus crude oil.  
The DGGE band patterns, numbers, and intensities in the  
treated microcosms were shifted (figure 1A). The bacterial  
diversities in the treated microcosms were reduced, and the  
abundance of some bacterial species was increased, which was  
represented by the intense bands in each treatment. PyElph  
analysis showed that the control and crude oil treatments were  
phylogenetically close and occupied the first cluster of the tree.  
The second cluster included Corexit 9500Aand Corexit 9500A  
plus crude oil treatments (Figure 1B).  
T
strain DS-1 has an ability to completely degrade linear  
alkylbenzenesulfonate (LAS) surfactants [21], and it is  
considered a typical member of many heterotrophic LAS-  
degrading bacteria [22].  
3
.2 Phylogenetic analysis of the main DGGE bands  
The main DGGE bands in Corexit 9500A treatment were  
B1, B2, and B3 (figure 1A). DNA sequence analysis of these  
bands suggested that they were phylogenetically close to  
T
Pandoraea thiooxydans strain ATSB16 , Janthinobacterium  
sp. T3-QB-2044, and Hyphomicrobium nitrativorans strain  
T
NL23 , respectively (Table 2). Pandoraea thiooxydans strain  
ATSB16T,  
a facultatively chemolithoautotrophic, sulfur-  
oxidizing bacterium, was isolated from a rhizosphere soil of the  
sesame plant (Sesamum indicum L.) [16]. Pandoraea  
thiooxydans strains of environmental sources are involved in  
degradation of many environmental pollutants [17]. The strain  
T
ATSB16 can grow chemolithoautotrophically with sulfur,  
sulfite, thiosulfate, and tetrathionate. Furthermore, this strain is  
capable of reducing nitrate and hydrolyzing Tween 80 for  
growth [16]. The bacterial genus Janthinobacterium includes  
several  
hydrocarbon-degrading  
strains,  
such  
as  
Janthinobacterium sp. J3 and Janthinobacterium sp. J4.  
Janthinobacterium sp. J3 possesses CAR-catabolic genes that  
are capable of metabolizing carbazole, an N-hetedrocyclic  
aromatic compound has been extracted from crude oil, shale  
oil, and creosote [18]. Hyphomicrobium nitrativorans strain  
T
NL23 was isolated from a biofilm of a methanol-fed  
denitrification system treating seawater, Canada [19]. The  
genome analysis of this strain has identified a number of ORFs  
encoding enzymes that are involved in nitrite, nitrate, nitric  
oxide, and nitrous oxide reduction. Corexit 9500A's  
hydrocarbons and Tween 80, as well as the high concentrations  
of nitrate, nitrite, sulfur, and sulfate, might have enhanced the  
Figure 1: Bacterial community shift after 60 days of exposure to  
Corexit 9500A, crude oil, and Corexit 9500Aplus crude oil. (A) DGGE  
profiles of bacterial 16s rRNA gene in sediment microcosms treated  
with 0.2% of Corexit 9500A, 2% of crude oil, and 0.2% of Corexit  
9
500A plus 2% of crude oil. (B) Unweighted Pair Group Method with  
population  
of  
species  
Pandoraea  
thiooxydans,  
Arithmetic Mean (UPGMA) dendrogram of DGGE profiles. The values  
on the horizontal lines stand for genetic distances among treatments in  
percentages. M: marker; numbers 1, 2, and 3 represent individual  
triplicate  
Janthinobacterium sp., and Hyphomicrobium nitrativorans to  
thrive in these contaminated conditions and dominate the  
bacterial community. The DGGE bands B4, B5, and B6 were  
the major bands in the crude oil treatment. DNA sequence  
analysis of these bands revealed that they were homologous to  
Table 2: Phylogenetic affiliation between the isolated DGGE bands and their close relative organisms with the GenBank accession  
numbers and percentages identity  
Percent  
Band  
Close relatives in GenBank databases  
GenBank Accession no.  
identity  
99.37  
96.42  
90.43  
86.71  
91.77  
85.71  
84.28  
93.08  
98.78  
93.71  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B10  
Pandoraea thiooxydans strain ATSB16T  
Janthinobacterium sp. T3-QB-2044  
Hyphomicrobium nitrativorans strain NL23  
Hydrocarboniphaga effusa strain AP103  
Parvibaculum lavamentivorans strain DS-1  
Alicyclobacillus ferrooxydans isolate YE3-D4-31i-CH  
Janthinobacterium sp. A1-13  
Parvibaculum lavamentivorans strain DS-1  
Parvibaculum lavamentivorans strain DS-1  
Dyella sp. sk100104  
NR_116008  
KJ922698  
T
NR_121713  
NR_029102  
NR_074262  
FN870342  
AB252072  
NR_074262  
NR_074262  
GU552467  
T
T
T
T
261  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 259-263  
The genus Parvibaculum includes several hydrocarbon-  
degrading species, which have been isolated from hydrocarbon  
contaminated environments [23, 24]. Crude oil addition and  
biosurfactants produced by bacterial degradation of  
hydrocarbons might have enhanced this bacterial strain to  
dominate the bacterial community in crude oil treated  
microcosms. Alicyclobacillus ferrooxydans has the ability to  
metabolize various carbon forms as sources for growth and  
energy. This species can also grow by oxidation of ferrous iron,  
sulfides, and elemental sulfur [25]. Chemical analysis showed  
that the salt marsh sediment sample has a high concentration of  
iron, sulfate, and sulfur (Table 1).  
The major DGGE bands in Corexit 9500A plus crude oil  
treatment were B7, B8, B9, and B10 (table 2). DNA sequence  
analysis revealed that B7 was phylogenetically homologous to  
Janthinobacterium sp. A1-13. Janthinobacterium sp. A1-13,  
an acid tolerant bacterium, was isolated from peat soil in  
Indonesia [26]. This bacterium inhabits heavily contaminated  
industrial wastes [27], and it is considered one of the most  
Competing interest  
The author declares that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
References  
1
.
Prince R, Atlas RM. Bioremediation of marine oil spills.  
Bioremediation: Applied microbial solutions for realworld  
environmental cleanup. Oil & Gas Science and Technology. 2003  
Apr 29:269-92.  
2. Brakstad OG, Nordtug T, Throne-Holst M. Biodegradation of  
dispersed Macondo oil in seawater at low temperature and different  
oil droplet sizes. Marine Pollution Bulletin. 2015 Apr 15;93(1-  
2
):144-52.  
3
.
Singer MM, George S, Lee I, Jacobson S, Weetman LL, Blondina  
G, Tjeerdema RS, Aurand D, Sowby ML. Effects of dispersant  
treatment on the acute aquatic toxicity of petroleum hydrocarbons.  
Archives of Environmental Contamination and Toxicology. 1998  
Feb 1;34(2):177-87.  
4. Zahed MA, Aziz HA, Isa MH, Mohajeri L. Effect of initial oil  
concentration and dispersant on crude oil biodegradation in  
contaminated seawater. Bulletin of Environmental Contamination  
and Toxicology. 2010 Apr 1;84(4):438-42.  
5. Haritash AK, Kaushik CP. Biodegradation aspects of polycyclic  
aromatic hydrocarbons (PAHs): a review. Journal of Hazardous  
Materials. 2009 Sep 30;169(1-3):1-5.  
2
important N O-producing bacteria in such environments [26].  
The bands B8 and B9 were homologous to Parvibaculum  
T
lavamentivorans strain DS 1 . Parvibaculum lavamentivorans  
T
strain DS-1 has the ability to completely degrade linear  
alkylbenzenesulfonate (LAS), a major laundry surfactant [21].  
Corexit 9500A surfactants might have enriched this strain  
under these conditions. The band B10 was homologous to  
Dyella sp. sk100104. This strain was isolated from a  
contaminated forest soil with a mixture of xenobiotics,  
6
.
Alabresm A, Chen YP, Decho AW, Lead J. A novel method for  
the synergistic remediation of oil-water mixtures using  
nanoparticles and oil-degrading bacteria. Science of the Total  
Environment. 2018 Jul 15;630:1292-7.  
7
.
Ramachandran SD, Hodson PV, Khan CW, Lee K. Oil dispersant  
increases PAH uptake by fish exposed to crude oil. Ecotoxicology  
and Environmental Safety. 2004 Nov 1;59(3):300-8.  
Fiocco RJ, Lewis A. Oil spill dispersants. Pure and Applied  
Chemistry. 1999 Jan 1;71(1):27-42.  
Atlas RM, Hazen TC. Oil biodegradation and bioremediation: a  
tale of the two worst spills in US history. Environmental Science  
and Technology. 2011;45:6709-15.  
including 1-amino-2-propanol (APOL),  
1
methyl-2-  
pyrrolidinone (MP), 1- dioxide (THT), diethylene glycol  
monoethyl ether (DGMEE), diethylene glycol monomethyl  
ether (DGMME), tetraethylene glycol (TEG), and  
tetramethylammonium hydroxide (TMAH), and this bacterium  
ability to degrade these contaminants has been reported [28].  
The majority of these compounds are glycol-based solvents,  
which are similar to Corexit 9500A constituents.  
8
9
.
.
10. Prince RC, Butler JD. A protocol for assessing the effectiveness of  
oil spill dispersants in stimulating the biodegradation of oil.  
Environmental Science and Pollution Research. 2014 Aug  
1
;21(16):9506-10.  
4
Conclusion  
1
1. Techtmann SM, Zhuang M, Campo P, Holder E, Elk M, Hazen TC,  
Conmy R, Santo Domingo JW. Corexit 9500 enhances oil  
biodegradation and changes active bacterial community structure  
of oil-enriched microcosms. Applied and Environmental  
Microbiology. 2017 May 15;83(10). e03462-16.  
2. Swannell RP, Daniel F, Croft BC, Engelhardt MA, Wilson S,  
Mitchell DJ, Lunel T. Influence of physical and chemical  
dispersion on the biodegradation of oil under simulated marine  
conditions. In Arctic and marine oil spill program technical  
seminar. 1997 Jun (Vol. 1, pp. 617-642). Ministry of supply and  
Services, Canada.  
13. Bælum J, Borglin S, Chakraborty R, Fortney JL, Lamendella R,  
Mason OU, Auer M, Zemla M, Bill M, Conrad ME, Malfatti SA.  
Deepsea bacteria enriched by oil and dispersant from the  
Deepwater Horizon spill. Environmental Microbiology. 2012  
Sep;14(9):2405-16.  
4. Al-Jawasim M, Yu K, Park JW. Synergistic effect of crude oil plus  
dispersant on bacterial community in a Louisiana salt marsh  
sediment. FEMS Microbiology Letters. 2015 Sep 1;362(17).  
The structure of the bacterial community in the salt marsh  
sediments was significantly shifted in response to  
Corexit9500A plus crude oil treatment, and it was different  
from those either Corexit 9500Aor crude oil treatment. Corexit  
1
9
500A addition to crude oil showed combined effects on the  
bacterial community and enhanced the biodegradation rate by  
way of increasing the diversity and richness of hydrocarbons  
degrading species. Further studies are required to determine the  
long-term combined effects of Corexit 9500Aplus crude oil on  
the environment to evaluate the environmental impacts of  
dispersants application during oil spills.  
Acknowledgement  
I am grateful for the Higher Committee for Education  
Development in Iraq (HCED) and Troy University, Troy, AL.  
USA/ the Faculty Development Research grants, for funding  
this research.  
1
15. Muyzer G, De Waal EC, Uitterlinden AG. Profiling of complex  
microbial populations by denaturing gradient gel electrophoresis  
analysis of polymerase chain reaction-amplified genes coding for  
Ethical issue  
Author is aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
1
1
6S rRNA. Applied and Environmental Microbiology. 1993 Mar  
;59(3):695-700.  
1
6. Anandham R, Indiragandhi P, Kwon SW, Sa TM, Jeon CO, Kim  
YK, Jee HJ. Pandoraea thiooxydans sp. nov., a facultatively  
chemolithotrophic, thiosulfate-oxidizing bacterium isolated from  
rhizosphere soils of sesame (Sesamum indicum L.). International  
Journal of Systematic and Evolutionary Microbiology. 2010 Jan  
(
avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
submitted work is original and has not been published  
elsewhere in any language.  
1
;60(1):21-6.  
1
7. Jiang XW, Liu H, Xu Y, Wang SJ, Leak DJ, Zhou NY. Genetic  
and biochemical analyses of chlorobenzene degradation gene  
262  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 259-263  
clusters in Pandoraea sp. strain MCB032. Archives of  
Microbiology. 2009 Jun 1;191(6):485-92.  
1
1
8. Inoue K, Widada J, Nakai S, Endoh T, Urata M, Ashikawa Y,  
Shintani M, Saiki Y, Yoshida T, Habe H, Omori T. Divergent  
structures of carbazole degradative car operons isolated from  
Gram-negative bacteria. Bioscience, Biotechnology, and  
Biochemistry. 2004 Jan 1;68(7):1467-80.  
9. Martineau C, Villeneuve C, Mauffrey F, Villemur R. Complete  
T
genome sequence of Hyphomicrobium nitrativorans strain NL23 ,  
a denitrifying bacterium isolated from biofilm of a methanol-fed  
denitrification system treating seawater at the Montreal Biodome.  
Genome Announcements. 2014 Feb 27;2(1). 2:e01165-13.  
2
2
0. Chang HK, Zylstra GJ, Chae JC. Genome Sequence of n-Alkane-  
T
Degrading Hydrocarboniphaga effusa Strain AP103 (ATCC  
T
BAA-332 ). Journal of Bacteriology. 2012; 194:5120-25.  
1. Schleheck D, Knepper TP, Eichhorn P, Cook AM. Parvibaculum  
lavamentivorans DS-1T degrades centrally substituted congeners  
of commercial linear alkylbenzenesulfonate to sulfophenyl  
carboxylates and sulfophenyl dicarboxylates. Applied and  
Environmental Microbiology. 2007 Aug 1;73(15):4725-32.  
2
2
2. Dong W, Eichhorn P, Radajewski S, Schleheck D, Denger K,  
Knepper TP, Murrell JC, Cook AM. Parvibaculum  
lavamentivorans  
converts  
linear  
alkylbenzenesulphonate  
surfactant to sulphophenylcarboxylates, α, β‐unsaturated  
sulphophenylcarboxylates and sulphophenyldicarboxylates, which  
are degraded in communities. Journal of Applied Microbiology.  
2
004 Mar;96(3):630-40.  
3. Alonso-Gutiérrez J, Figueras A, Albaigés J, Jiménez N, Vinas M,  
Solanas AM, Novoa B. Bacterial communities from shoreline  
environments (Costa da Morte, Northwestern Spain) affected by  
the Prestige oil spill. Applied and Environmental Microbiology.  
2
009 Jun 1;75(11):3407-18.  
2
2
2
4. Wang L, Wang W, Lai Q, Shao Z. Gene diversity of CYP153A and  
AlkB alkane hydroxylases in oildegrading bacteria isolated from  
the Atlantic Ocean. Environmental Microbiology. 2010  
May;12(5):1230-42.  
5. Jiang CY, Liu Y, Liu YY, You XY, Guo X, Liu SJ.  
Alicyclobacillus ferrooxydans sp. nov.,  
a ferrous-oxidizing  
bacterium from solfataric soil. International Journal of Systematic  
and Evolutionary Microbiology. 2008 Dec 1;58(12):2898-903.  
6. Hashidoko Y, Takakai F, Toma Y, Darung U, Melling L, Tahara  
S, Hatano R. Emergence and behaviors of acid-tolerant  
Janthinobacterium sp. that evolves N2O from deforested tropical  
peatland. Soil Biology and Biochemistry. 2008 Jan 1;40(1):116-  
2
5.  
2
2
7. Maukonen J, Saarela M. Microbial communities in industrial  
environment. Current Opinion in Microbiology. 2009 Jun  
1
;12(3):238-43.  
8. Jeon BY, Park DH. Isolation of xenobiotic-degrading bacteria and  
analysis of bacterial community variation in soil microcosm  
contaminated with xenobiotics. Journal of the Korean Society for  
Environmental Analysis. 2010;13(2):85-91.  
263