Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 242-252  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/9(1)252  
Low Carbon Development through Measuring and  
Monitoring Carbon Emission in Johor Bahru,  
Malaysia  
Isiaka Adeyemi Abdul-Azeez*  
Department of Urban & Regional Planning, Modibbo Adama University of Technology, Yola, Nigeria  
Received: 10/09//2020  
Accepted: 08/11/2020  
Published: 20/03/2021  
Abstract  
Reducing carbon dioxide emissions through low carbon development is an appropriate solution to combating climate change. This  
research aims to identify ways of reducing carbon dioxide emissions in Johor Bahru towards promoting low carbon development. The  
research investigated the low carbon initiatives in Malaysia. The study was based on purposive case study and restricted to Johor Bahru,  
Malaysia. It reviewed existing practice of low carbon development in the study area. Stakeholders and organizations related to low carbon  
development and low carbon initiatives were interviewed. The study also observed that the initiative is relatively in the early stage with few  
projects accomplished. However, emphasis was placed on other themes of low carbon concept rather than direct measurement of Carbon  
2
dioxide (CO ) emission. Since majority carbon emissions are from electricity and transport sectors, the Malaysian University Carbon  
Emission Tool (MUCET) was modified and suggested for measuring and monitoring emissions in Johor Bahru. This study facilitates the  
formulation of policies that target emission reduction and ensure steady movement into clean energy future.  
Keywords: Low Carbon Development, Energy Use, Carbon Emission Tool  
1
the world have established the development objective to become  
low-carbon cities.  
1
Introduction  
Spatial growth and high population in cities are enhanced by  
Low carbon development is very significant to the sustainable  
development of cities. Over half of the global population resides in  
cities. This figure would rise to about 70 percent by 2050 [2]. Cities  
are currently responsible for 67-76 percent of energy use and 71-76  
percent of energy related carbon dioxide emissions [4,8]. A major  
solution to economic growth without increasing carbon dioxide  
emission is through Low Carbon Development. Therefore, Cities  
are challenged to go low carbon so as to achieve sustainable  
development [9], and many cities have established the development  
objective to become low-carbon.  
Low carbon development concept has its roots in the United  
Nations Forum for Climate Change Convention (UNFCCC)  
adopted in Rio in 1992. It refers to strategies and growth plans that  
promote low emission or climate resilient economic growth [10].  
Low carbon development refers to a society that emits greenhouse  
gas (GHG) only in an amount that can be absorbed by nature and  
portends a movement towards a simpler life style that realizes richer  
quality of life in coexistence with nature. This means encouraging  
greenness through new growth, new market and new consumer  
culture that respects environmentally-friendly technologies by  
promoting emission reduction strategies and renewable energy use.  
Low carbon development can be achieved by promoting  
environmentally friendly activities to tackle the effects of climate  
the use of energy for movement of goods and services resulting in  
continuous combustion of fossil fuel based energy. Concentrations  
of human activities in cities produce emissions of greenhouse gases  
that accounts for about 78% of carbon emission [1,2]. The current  
technological practices that favor the use of fossil fuels as major  
sources of energy [3] are major concerns for carbon emissions. The  
insatiable energy use for the city's economy to continue to grow  
under business as usual and the combustion of fossil fuel based  
2
energy often results in emissions of CO , which is the major driving  
force for global warming and responsible for the phenomenal  
climate change [4].  
Climate change is one of the greatest challenges to global  
development and poses threat to the environment and the global  
population [5]. The effects of climate change can best be tackled  
through adaptation of low carbon technology and designing  
mitigation policies, usually referred to as Low Carbon  
Development. This may involve implementation of policies on  
energy sustainability which may bring about changes to the  
industrial structure and energy mix [6] as well as impact on  
different sectors and employment structures [7]. Therefore, most  
nations globally are charting the path to reduce carbon dioxide  
emission in order to tackle climate change and many cities around  
Corresponding author: Isiaka Adeyemi Abdul-Azeez, Department of Urban & Regional Planning, Modibbo Adama University of  
Technology, Yola, Nigeria; Email: azeezabu@yahoo.com  
242  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 242-252  
change through adaptation of low carbon technology and by  
designing mitigation policies so as to achieve sustainable human  
development [11,12,13]. The most significant question is how the  
municipal authorities and other stakeholders will intervene to  
reduce carbon emission with increasing urbanization. The major  
focus could be on implementation of adopted resolutions of policies  
designed by Governments and NGOs such as U.N, E.U, A.U among  
others.  
In the light of this, the Prime Minister of Malaysia pledge to  
reduce the emission intensity of Malaysia by 40% below 2005 level  
by the year 2020 [14,15]. To achieve this, the government of  
Malaysia established agencies responsible for the implementation  
of strategies that will facilitate the achievement of the country's  
carbon emission reduction goals through the preparation of the  
blueprint for the promotion of the low carbon society. Notable is  
the Low Carbon Blueprint for Iskandar Malaysia 2025, which  
covers five local authorities including the entire district of Johor  
Bahru and Kulai Jaya. The blueprint recommends 281 strategic  
policies that would assist to achieve a target of 58 percent reduction  
in carbon intensity by 2025 compared to 2005 levels [16]. The  
document was officially launched in 2012 by the Prime Minister of  
Malaysia and adopted by the Iskandar Regional Development  
Authority (IRDA).  
Lifestyles, transportation, domestic energy uses, and consumption,  
are among the prominent factors that contribute to global warming  
[21]. Hence, the greenhouse gas emission of a city is a reflection of  
its structure, energy resources and its resident’s lifestyles [12].  
Economic development could mean more vehicular traffic  
movements, more constructions of buildings, more manufacturing  
and industrial developments, more retail and shopping activities,  
more concentration of human activities and more energy  
consumption for transport and electricity. Such thriving economy  
may bring about growth and socio-economic benefits; usually at the  
expense of significant environmental impacts through increasing  
energy demand and rising greenhouse gas emission. Therefore,  
cities are among the largest contributors of carbon emission where  
large concentration of human activities impact on the environment  
having consequences for climate change. Similarly, energy is  
needed to sustain and expand economic processes like agriculture,  
electricity, industrial productions, transport and other services, but  
as energy consumption continues, the threat to global warming also  
increases, thus, the need to limit the increasing global warming and  
prevent dangerous climatic change becomes critical [22].  
In view of the implication of energy use on climate change, The  
role of cities in reducing emissions is prominent, since issues of  
poverty reduction and economic development could be guided by  
low carbon innovations and emission reduction strategies [5]. Since  
the kind of technology that fuels the growth of most cities is  
principally fossil fuel based, therefore cities are central to  
implementation of low carbon development and as a result, carbon  
emission becomes a common issue of city sustainability [23,24,25].  
Cutting emission may affect economic growth in a hard and  
difficult way [26], not with standing, taking low carbon  
development path makes it possible to maintain growth and sustain  
the living standard while minimizing fossil fuel energy  
consumption and reducing carbon emissions. In other words,  
energy is central to economic growth and sustainability and there  
can hardly be a sustainable city development without sustainable  
energy development [27].  
Reducing carbon dioxide emission from all sectors of human  
activities to mitigate global warming and combat climate change  
will require steady monitoring so as to measure and determine the  
2
existing levels of CO emission in order to manage and effectively  
plan the reduction of such emission. The baseline emission for  
Johor Bahru was determined by the Low Carbon Asia Research  
Center, Universiti Teknologi Malaysia, UTM, in collaboration with  
their Japanese counterpart. This measurement and monitoring of  
carbon emissions was carried out for IRDA using the AsiaPacific  
Integrated Model (AIM) [17]. Self-monitoring is very important for  
administrators to understand the carbon situation and make  
informed decisions. IRDA needs to monitor emission reduction  
through its own interface because planning emission reduction  
becomes easier when familiar variables are considered, more so,  
people will easily adapt when they know how their footprint was  
Furthermore, energy plays a key role in most environmental  
challenges, therefore, to promote economic growth in the city while  
reducing carbon intensity, planning the reduction of carbon  
emission from energy use becomes imperative. It is also essential  
to find ways and means to reduce the emission of greenhouse gases,  
towards sustainable development of cities (Sathiendrakumar,  
2003). Like most cities, the kind of technology that fuels the growth  
of Johor Bahru is predominantly fossil fuel based energy whose  
arrived at. Energy has been identified as the driving force for CO  
2
emission [13,18]. Promoting low carbon development in Johor  
Bahru will identify the carbon emission scenario from energy use  
and adopt a method of assessment to estimate extent of carbon  
dioxide emission from the sources and facilitate policy formulation  
based on informed decision.  
The purpose of this research is to study how low carbon  
development is practiced in Johor Bahru and describe a method of  
2
combustion often results in carbon dioxide (CO ). The need for  
measurement and cutting carbon emissions is a key challenge,  
which should focus on achieving energy transformation required  
to balance economic growth and the environment. This requires  
scientific analysis regarding the sources of carbon emission and  
how the emissions can be reduced to achieve low carbon  
development. Therefore, the sources, type of and energy  
2
carbon inventory to determine CO emission through the  
assessment of the energy use resources in a manner easier to  
understand by all stakeholders. This will facilitate the setting and  
realization of emission reduction targets as well as promote low  
carbon development in Johor Bahru.  
consumption pattern become central to measuring the extent of CO  
2
to achieve sustainable low carbon development in Johor Bahru.  
Although, there is no existing method of accounting for carbon  
emissions that accurately reflect “true” emissions levels [20], the  
best method is one that most encourages reduction of emissions.  
For that reason, the introduction of an easier method of carbon  
2
Background of Study  
Energy is a vital input for social and economic development of  
any nation [19], and very significant in promoting low carbon  
development because, energy connects everything to everything  
else more universally and more quantifiably than any element [20].  
Economies of most nations have benefitted from energy resources  
and it is crucial to a modern economy being a necessary  
prerequisite for growth and social development. Cities are engines  
of growth of many nations and ensuring economic growth require  
the use of energy which is essential for growth and development.  
2
inventory to determine CO in a manner that is understood by the  
administrators is a key step promote low carbon development  
through innovative strategies of CO emission reduction that  
facilitates the setting of realizable carbon emission reduction targets  
from energy use. Consequently, measuring CO emission from  
2
2
243  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 242-252  
energy use will facilitate the determination of extent of emission  
and ease monitoring through periodical inventory as well as provide  
the platform for efffective management and efficient  
implementaion of emission reduction policies in Johor Bahru.  
and also conferences and publications to create awareness in the  
region.  
The blueprint was launched at COP 19 in 2012 [29] and  
provides the baseline for carbon emission for 2005 to understand  
the “Business as usual” (BAU) and counter measure scenario. The  
blueprint has been adopted for the implementation of Low Carbon  
Society at the 5 local authorities of Iskandar Malaysia and IRDA is  
monitoring the implementation of the low carbon projects at each  
of the five local authorities in Iskandar Malaysia. Regarding what  
has been achieved by low carbon initiative in Johor Bahru, Figure  
3
Methodology  
A critically review of low carbon initiatives of Malaysia is  
central to this study .In view of the specialized and technical nature  
of the study of low carbon developmnt, purposive sampling  
technique was adopted in the design, selection and collection of  
data. Sampling was centered on relevant authorities and  
Information obtained from organizations directly concerned with  
the management and implementation of related policies. Primary  
and Secondary types of data were collected from Iskamdar  
Regional Development Authority (IRDA), Low Carbon Society  
office, UTM, Sustainable Energy Development Authority (SEDA)  
and Felda Taib Andak. Also, secondary data were obtained from  
Taman Nasional Berhad (TNB), Jabatan Pengangkutan Jalan (JPJ),  
and International Energy Agency (IEA) among others. Since the  
study was to review existing practice of low carbon development in  
Johor Bahru, Secondary data were also obtained from relevant  
published articles like journals, government publications as well as  
from the internet. Finally, statistical analysis was performed, using  
descriptive method of analysis, frequency table and charts  
constructed using computer software (i.e. Microsoft Excel) for  
easier interpretation and discussion.  
1
shows the matrix of key actions of the Low Carbon Society  
Blueprint for Iskandar Malaysia 2025 in relation to IRDA’s  
Implementation Plans 2013-2015. This roadmap includes seven (7)  
out of the ten (10) implementation Plans of IRDA. The  
implementation plans are IRDA’s initiatives towards a climate  
resilient economy in Iskandar Malaysia, prepared according to the  
recommendations of the Blueprint. The implementation plan covers  
the major themes of the Low Carbon Society concept - Green  
Economy, Green Community and Green Environment, however,  
the roadmap did not discuss the three special projects, which  
require comprehensive study such as Bukit Batu Eco-Community,  
Low Carbon Village Felda Taib Andak and Nafas Baru, Pasir  
Gudang. Given the time limit, remarkable progress has been  
realized towards the low carbon development initiatives in Johor  
Bahru (Figure 1) and general awareness of the concept has been  
achieved. In an oral interview, Ho and Boyd [30] opined that the  
key obstacles to promoting low carbon development is changing the  
mind-set of those who have not embraced the need to reduce carbon  
intensity. However, continuous efforts is being made through the  
initiatives of various stakeholders to achieve the objectives of Low  
Carbon strategies in Iskandar region in general and Johor Bahru in  
particular.  
4
Low Carbon Development in Malaysian  
The 10th Malaysian Plan clearly expressed the aspiration of  
improving environmental quality by undertaking climate change  
mitigation, while the sixth strategic thrust of the 11th Malaysian  
Plan 2016-2020, focused on pursuing green growth for  
sustainability and resilience by considering four major areas  
namely;  
4
.1 Energy Consumption in Johor Bahru  
Energy is fundamental to achieving low carbon development.  
.
.
Strengthening the enabling environment for green growth.  
Adopting the sustainable consumption and production  
concept.  
The aspiration of Malaysian Government to encourage economic  
growth and development in Johor Bahru- a major flagship in the  
Iskandar Malaysia region would increase the threat to global  
warming due to increasing energy consumption for economic  
growth and social development. The first step energy management  
is to identify the pattern of energy consumption in the city. Johor  
Bahru offer diverse services for different activities. The extent of  
.
.
Conserving natural resources for present and future  
generations, and  
Strengthening resilience against climate change and natural  
disasters.  
The Malaysian government embraced the Low Carbon Society  
2
CO emission depends on types of service demand and energy  
requirements. High energy demand service sectors will yield higher  
CO emission according to the fuel-mix for electricity and fuel  
project to ensure that the energy used for development is consumed  
in an effective and efficient manner without impacting on climate  
change in the Iskandar Malaysia region in general and Johor Bahru  
in particular. This is with a belief that encouraging green economy  
will result in improved human wellbeing and social equity, while  
significantly reducing environmental risks and ecological scarcities  
2
types for transport. Figure 2 presents the schematic diagram of the  
pattern of energy consumption in Johor Bahru. Majority of the  
sources of energy that drives the growth of the city are fossil fuel  
based in the form of oil, coal and natural gas among others and  
constitutes the primary energy. Two principal sources of energy  
were identified as the generated electricity energy and transport fuel  
consumption or liquid energy. These represents the set of indicators  
of carbon emission from which data may be obtained to measure  
and compare the intensity of emission for various sectors of the city.  
Energy sustainability requires the inventory of energy consumption  
pattern as a prerequisite to identify the sectors or types of energy  
[28] and promoting economic growth while reducing carbon  
intensity. In line with the objectives to promote low carbon  
development in Johor Bahru, the Malaysian government entrusted  
onto the Iskandar Regional Development Authority (IRDA), the  
responsibility of pursuing green growth for sustainability and  
resilience in the Iskandar Malaysia region. IRDA assisted by the  
Low Carbon Asia Research Center UTM, Kyoto University, Japan  
and NIES, JICA, among others developed the Low Carbon  
Blueprint as a guide to achieve low carbon development in Iskandar  
Malaysia and show how these can benefit people socially,  
environmentally and economically. IRDA assists municipal  
authorities on how to implement low carbon projects and programs  
through the preparation of local plans and organizing workshops  
2
use with high energy demand so as to chart a path for CO emission  
reduction. The quantification and monitoring of indicators of  
carbon emission from energy use is desirable to achieve the goals  
of low carbon development. The values obtained from these sources  
could be communicated to a range of policy actions towards  
reducing carbon emission in Johor Bahru. particular.  
244  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 242-252  
Figure 1: Matrix of relationship between IRDA's projects and policies  
Source: A Roadmap towards low carbon Iskandar Malaysia. UTM  Low carbon Asia Research Center (2013)  
Figure 2: Pattern of Energy Consumption in Johor Bahru (Adapted and modified after Abdul-Azeez, 2015)  
245  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 242-252  
The Malaysia electricity generation by fuel (Figure 3) shows  
that natural gas constitutes the bulk of the fuel mix input while  
coal and oil remain very significant. Based on this fuel mix the  
emission factor for Malaysia is given as 0.741 Kg per Kwhr for  
year 2015 [31]. This figure is universal for electricity  
consumption in Malaysia peninsular because electricity is  
generally purchased from a single source, i.e. Tenaga Nasional  
Berhad (TNB).  
The load growth scenario for Johor Bahru is presented in  
Table 2. The consumption of electricity energy use is described  
according to service demand sectors such as electricity use for  
Domestic, Industrial, Commercial and Street lighting. Energy use  
by the industries is highest followed by Domestic and  
Commercial uses, respectively, while Street Lighting has the least  
consumption of electricity. Determination of extent of CO  
2
emission from these sectors can be critical in setting targets for  
emission reduction in Johor Bahru. Finally, the transition to low  
carbon societies will not be complete without commitment and  
leadership from Johor Bahru Municipal authority making local  
efforts to promote initiatives and measures encouraging energy  
efficiency, use of alternative fuels, as well as advanced and  
cleaner technologies among others.  
Table  
Combustion for electricity generation in Malaysian between years  
000 to 2013. The carbon emission from the fuel mix of  
1 presents the Carbon Emissions from Fuel  
2
Malaysian electricity has been rising annually since year 2000.  
Except for year 2009 where the figure dropped to 168,504.7 Kt  
CO  
89,002 in 2008 with emission factor of 0.696 kg of CO  
Figure 4). The carbon emission picked up again by 2010 and  
rose to about 82 percent by 2013 with emission factor of 0.693 kg  
of CO per kWh.  
2
with emission factor of 0.636 kg of CO  
2
per kWh from  
1
2
per kWh  
(
Table 2: Load growth scenario for Johor Bahru in MW  
Sector  
2010  
2013  
2015  
2
Domestic  
Commercial  
Industry  
Street lighting  
Total (MW)  
71.80  
45.79  
183.41  
4.59  
85.93  
59.66  
217.48  
5.09  
100.06  
71.19  
251.54  
5.47  
Considering the ambition of Malaysian government to go low  
carbon, one would have expected the fuel mix of the electricity  
production to be a major potential for reducing the country’s  
emission. The emission factor for electricity in Johor Bahru  
depends on the National figure as distributed by Tenaga Nasional  
Berhad (TNB) - the largest Electric utility company and the main  
energy provider in Malaysia. This is not steady and has increased  
by 4 percent above 2005 level (Table 1).  
305.59  
368.16  
428.27  
Source: Johor Bahru City Council (MajlisBandaraya JB-MBJB) 2015.  
2 2  
Figure 4: Total CO emission- Fuel Combustion (KtCO ) and Emission  
Factor in Malaysia (i.e CO per KWh) measured in KgCO /kWh (Source:  
Figure 3: Malaysia Electricity Generation by Fuel (Source: International  
Energy Agency. http://data.iea.org 2015)  
2
2
CO Emissions from Fuel Combustion, OECD/IEA, Paris, 2015)  
2
Table 1: Malaysian Carbon Emissions from Fuel Combustion.  
4
.2 Transport Energy Consumption in Johor Bahru  
There are 21,401,269 vehicles registered in Malaysia by 2013.  
Year  
Total CO  
2
emission- Fuel  
CO  
2
per KWh electricity  
(KgCO /kWh)  
Combustion (KtCO  
2
)
2
These include motorcycles, motorcars, buses, taxis, rental  
vehicles, goods vehicles, excavators, among others. As at 2012,  
the Federal capital territory of Kuala Lumpur (KL) has 4,963,646  
vehicles while. Johor State has a vehicle population of 2,923,898  
followed by Selangor with 2,363,333 vehicles. Based on a  
projected population figure of around 28.725 million the  
Malaysian person per car ratio of 2.95 persons/car is relatively  
high (Motor Trader, 2013).  
Table 3 shows the types and number of registered vehicles in  
Johor Bahru. About 90 percent of the vehicles are privately Cars  
and Motorcycles with 47.2 percent and 43.8 percent respectively.  
Lorries are about 4.9 percent while Public Buses and Taxis are  
about 0.29 percent and 0.41percent respectively. Hire and drive  
car and other vehicles such as agriculture and heavy duty vehicles  
are 0.08 percent and 0.03 percent.  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
000  
001  
002  
003  
004  
005  
006  
007  
008  
009  
010  
011  
012  
013  
114 085.9  
119 360.6  
125 397.8  
131 651.6  
145 308.6  
154 604.7  
160 477.4  
176 723.7  
189 002.8  
168 504.7  
188 405.1  
189 928.1  
191 441.1  
207 248.7  
540.5  
573.5  
631.3  
579.2  
599.2  
662.2  
640.3  
651.2  
696.7  
636.2  
769.0  
682.6  
681.2  
693.1  
2
Source: CO Emissions from Fuel Combustion, OECD/IEA, Paris, 2015  
246  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 242-252  
Table 3: Total number of registered vehicles by type  
consumption pattern and energy service demand; transport  
volume and structure; and low carbon measures that include  
energy-efficient devices and buildings, renewable energy, modal  
shift to public transport and fuel mix in power generation [35].  
Majority of these multiple data are large and whose validation  
may be difficult and besides do not have a direct relationship to  
carbon dioxide emission. For instance, ExSS used the Base-year  
data for Population and Household; Input Output table (or,  
regional economic accounting); Transport demand (Passenger &  
Freight); Building Energy demand and Energy supply, to make  
reference for future scenario such as population projection,  
economic projection or planning, transport planning, energy  
strategy. Therefore, in view of the volume of variables used for  
modeling and the complexity of its design, it is difficult to  
interpret the simulation results of Extended Snapshot Tool (ExSS)  
by the policy makers and are not be easily understood by the  
administrators.  
No  
1
2
3
4
5
6
7
8
Type of vehicles  
motorcycle  
car  
Number of vehicles  
771,432  
831,606  
5,073  
bus  
taxi  
7,317  
hire & drive car  
lorry  
1,583  
86,722  
Others  
total  
58,289  
1,762,022  
Source: Road Transport Department, JabatanPengangkutanJalan,JPJ)Johor  
Bahru, 2014  
Since the majority of the vehicles use fossil fuel, there is an  
indication of high CO  
2
emission from vehicular sector  
particularly from privately owned Cars and motorcycles. The  
study also shows that the public transport sector in Johor Bahru is  
not adequately developed and poorly patronized due to high  
private vehicle ownership.  
5
.2 Low Carbon Cities Framework and Assessment System  
Among the existing carbon calculators used in Malaysia is the  
4
.3 Measuring Carbon Dioxide Emission in Johor Bahru  
The assessment and determination of the existing levels of CO  
2
Low Carbon Cities Framework and Assessment System (LCCF).  
is critical to formulate policies for emission reduction, encourage  
investments in energy efficiency and promote low carbon  
development in Johor Bahru. Since cities consume 78 percent of  
the world’s energy and produce 60 percent of the total carbon  
dioxide emission [32], the development of GHG inventory from  
energy use resources is crucial to present the picture of the current  
status of carbon emissions as a key to achieving energy action  
plan. The measurement and monitoring of carbon emissions in  
Johor Bahru is based on the AsiaPacific Integrated Model (AIM)  
or ExSS to provide scientific findings and Quantitative modeling  
of carbon dioxide emissions Johor Bahru [17]. In order to manage  
carbon dioxide emission effectively and achieve low carbon  
development in Johor Bahru, direct measurement of extent of  
emission and monitoring of levels of reduction from transport and  
electricity sectors is very essential. This is because transportation  
accounts for 95 percent of the global oil consumption and about  
The functions of this Assessment are:  
-
-
-
-
Encourage and promote the concept of low carbon cities and  
townships in Malaysia.  
To guide cities in making choice/decision towards greener  
solutions.  
To assist stakeholders to develop action plans for low carbon  
development.  
As a tool to calculate the carbon emission within the  
development.  
The tool recognized 4 relevant carbon factors as elements  
contributing to GHG emission, namely:  
Urban environment  
Urban transportation  
Urban infrastructure  
Buildings  
This tool consider many variables such as 13 performance  
criteria and 35 sub criteria in the assessment of carbon emission.  
4
8 percent of total energy is used in buildings [33]. Furthermore,  
what cannot be measured cannot be managed and monitoring is  
only possible once there is agreement on what to measure. This is  
not to say that attempts have not been made to measure extent of  
Carbon emission in Malaysia. For instance, there are two  
commonly used tools for assessment of crabon emission in  
Malaysia among which are the Extended Snapshot tool (ExSS)  
and the Low Carbon Cities Framework and Assessment System  
The Malaysian Ministry of Energy, Green Technology and Water  
(
KeTTHA) through cooperation with NEDO (New Energy and  
Industrial Technology Development Organization), Japan, used  
the LCCF in Putrajaya and Cuberjaya as a showcase for other  
townships in Malaysia. Like ExSS, the LCCF was also considered  
to be rather complicated. Although IRDA assisted to provide data  
for LCCF, the tool was not used for Johor Bahru in view of the  
large size of measurable variables required and the lack of  
understanding of how figures were derived. This may affect  
making informed decisions towards developing and  
(
LCCF). These tools are briefly discuss below for the purpose of  
comparism and clarity.  
5
Low-Carbon Emission Assessment Models  
implementing sound policies and practices towards CO  
reduction. In view of the inadequacies of existing tools to measure  
the actual CO emission as well as the poor understanding of the  
2
emission  
5
.1 Asia-Pacific Integrated Model (AIM) Extended Snapshot  
Tool  
The Asianpacific Integrated Modeling System otherwise  
2
process by administrators, this study adapted a prototype tool  
designed by the researcher - the Malaysian University Carbon  
Emission Tool (MUCET) to chart the path for emission reduction  
in Johor Bahru. MUCET focused towards reduction of CO2  
emission from fossil fuel based energy use.  
known as the Extended Snapshot Tool (ExSS) was developed by  
Kyoto University and the National Institute for Environmental  
Studies (NIES), Japan for the creation of low carbon scenarios  
[34]. This was used to account for GHG emissions upon which  
the GHG emission mitigation options of Iskandar Malaysia was  
based. The tool is a static model consisting of simultaneous  
equations with about 6000 variables that considers a wide variety  
of variables to build up its assumptions among  
These include economic growth and changes in industrial  
structure; demography; changes of lifestyles in terms of  
5.3 Malaysian University Carbon Emission Tool (MUCET)  
The Malaysian University Carbon Emission Tool (MUCET)  
was developed by the researcher and also tested in UTM,  
Malaysia [18,27]. The tool was designed based on the emission  
factors for Malaysia Peninsula electricity supply as given by  
247  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 242-252  
International Energy Agency (IEA) and according to the fuel mix  
of electricity purchased from Tenaga Nasional Berhad (TNB).  
MUCET also integrated the emission factor for Gasoline and  
Diesel combustion in vehicles in accordance with the Code of  
Federal Regulations at 40 CFR 600.113-78 based on Inter-  
Governmental Panel on Climate Change (IPCC) guidelines [36].  
Figure 7 shows the adapted MUCET for Johor Bahru City Carbon  
Emission. Column A present the service demand sectors for  
electricity and transport, while categories of energy use are shown  
in column B. The annual figures of Petrol/Gasoline and Diesel  
consumed for traffic movement in Litres of fuel, the electricity  
measured in kWh and also Natural gas consumption (where  
applicable) are input into the calculator. The tool uses the  
conversion formula embedded in each column to generate the  
carbon emission equivalent. It also automatically converts the  
total annual electricity input for these sectors in kWhr into tons of  
6
The Development of Emission Tool for Johor  
Bahru  
For the purpose of this study, the Malaysian University  
Campus Emission Tool (MUCET) was modified for the  
measurement of carbon emission in the city of Johor Bahru. The  
tool focused mainly on energy and carbon emission related  
service sectors arranged into two categories according to  
generated electricity and transport fuel energy. The associated  
2
CO emission was based on the emission factors for purchased  
electricity supply from Taman NationaBerhad (TNB), according  
to the fuel mix data and figure offered by the Sustainable Energy  
Development Authority (SEDA). For the transport sector, the  
emission factor for gasoline and diesel combustion in vehicles  
was integrated in the tool in accordance with IPCC guidelines  
mentioned above.  
carbon dioxide (t CO  
The tool offers direct measurement of CO  
2
).  
6
.1 Description of the Malaysian University Carbon Emission  
Tool  
The Malaysian University Carbon Emission tool adapted for  
2
emission from  
combustion of fossil fuel use in Transport and Electricity, which  
constitutes about 78% of total emission in Cities [33]. It can also  
measure, monitor and simulate policy outcomes by inserting the  
values of electricity or fuel consumption for the category of use  
or service demand in the appropriate columns and rows of types  
of energy use. Other service demands such as Agriculture and  
Water that require the combination of fuel and electricity energy  
use can also be calculated in a similar manner to show total  
percentages as well as their percentages from the total emission.  
Johor Bahru consists of columns classified into three (3) groups  
namely; Sources of Carbon Emission, Columns of Measured  
Parameters, Results and Emission Summary. There are five (5)  
major groups of rows namely; Rows of Input Variables, Total  
Carbon Emission percentage, Row of Constants, Rows of Input  
Variable for Electricity and Rows of Input Variable for transport.  
2
The tool calculates CO emission from the major service areas  
that constitutes Johor Bahru’s energy consumption pattern. These  
are arranged into two categories of Electricity generation and  
Transport fuel energy respectively. The sources of carbon  
emission are essentially the services associated with electricity  
and fuel energy use.  
Figure 8: MUCET for City Carbon Emission )Source: Modified after Abdul-Azeez (2012)(  
248  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 242-252  
These constitute Johor Bahru’s energy system and determine the  
city’s operation and performances as listed below:  
also consists of rows of input variables, which are based on the  
two (2) service sectors i.e. Electricity and Transport. Similarly,  
the rows can be increased according to the category of uses and  
measured parameters. The calculation of emission from fuel  
consumption of vehicles is based on the total amount of fuel  
recorded in litres where the conversion rates of the inputs are  
embedded within the rows of the tool, so that the corresponding  
value of carbon emission is automatically generated in tons of  
.
Electricity  
-
-
-
-
-
Domestic/Residential  
Commercial  
Industry  
Street Lighting  
Others (such as energy use for Agriculture, for  
production and distribution etc)  
water  
2 2  
CO (tCO ). However, where the record of fuel purchase is NOT  
.
Transport types  
Motor cycles  
Cars  
Buses  
Hire &Drive car  
Lorry/Trailer  
Pick-up  
available, the total litres of annual fuel consumption can be  
calculated as a product of the total annual distance travelled and  
the fuel efficiency of the vehicle type as given below:  
-
-
-
-
-
-
-
total annual distance travelled  
Total fuel Consumption=  
fuel efficiency of vehicle  
퐓퐅퐂 =  
(1)  
퐟퐟  
Other vehicles (may be identified such as mobile  
machinery, agricultural and  
or other transport modes within the city.  
The columns of measured parameters include category of  
construction equipment  
where, TFC is total annual fuel consumption, T is average  
distance travelled and ff is fuel efficiency of vehicles. The  
calculation of total fuel consumption was modified based on the  
formula adopted for the Greenhouse Gas Emissions Inventory in  
Hobart and William Smith Colleges (Clayton and Thompson,  
uses, fuel types (Petrol/ Gasoline, Diesel and Natural Gas where  
applicable) for transport and the annual electricity consumption  
measured in kWh for all category of uses. Using the imbedded  
constant values, the calculator automatically converts the total  
annual inputs of electricity and fuel into tons of carbon dioxide  
2
008). The standard emissions factors for gasoline is given as 2.3  
kilograms of Carbon dioxide equivalent (kCO ) while the  
standard emissions factors for Diesel oil is given as 2.7 kilograms  
of Carbon dioxide equivalent (kCO ) [36].  
2
(
tCO ) displayed under each column. The last section of the  
2
2
columns constitutes the columns of percentages of CO  
2
contribution by each element within the sector to the overall total  
carbon emission. The values can be observed and compared at a  
glance, upon which informed decisions can be made based on the  
values and emission targets can be set using the results. The tool  
Figure 9: Sources of data for energy use and carbon emission for Johor Bahru)  
Source: Researcher’s field work (2015)  
249  
6
.2 Major sources of energy use data  
The major sources of data for energy use and carbon emission  
Johor Bahru include data from meter readings of total purchased  
electricity for all buildings categories and use types as well as data  
from fuel consumption for the total transport energy use or the  
total distance covered within Johor Bahru by vehicle types as  
shown in Figure 9.  
The data required for testing the tool was not available from  
a primary source. The study relies on secondary source of data  
whose reliability could not be ascertained. Similarly, it was not  
possible to obtain data on annual fuel consumption for energy use  
for all categories of vehicles because such records were not kept  
by vehicle owners. It was also not possible to obtain accurate  
meter reading for electricity consumption for categories of use in  
Johor Bahru. For the purpose of this study data from the Load  
growth scenario for Iskandar Malaysia (Table 1) and the total  
number of registered vehicles by typereferences (Table 2) were  
used to test the tool. It was noted that the highest 59 percent of  
carbon emission comes from the industrial sector while the street  
Figure 11: Percentage of Carbon Emission from Transport Sector in  
Johor Bahru (Source: Researcher’s field work (2015))  
7
Conclusion  
Cities worldwide are taking advantage of urbanization and  
building on economic growth for wealth generation. Carbon  
emission will also continue to built-up as long as economic  
growth and wealth generation in the cities rely on fossil fuel based  
energy sources. Low carbon development could change the trend,  
but this will depend on better management of cities emission  
particularly from energy use sources that contribute significantly  
to carbon emission.  
Promoting low carbon development through carbon emission  
reduction measures in Johor Bahru will require a movement  
towards a mix of low-carbon power generation to achieve its  
goals. This will involve utilizing renewable energy sources to  
replace the fossil-fuel based energy in transport and electricity  
and providing incentives for specific sectorpolicy reforms in  
urban transport policies.  
Unless there is an efficient measuring system and the  
mobilization of stakeholders through strengthened partnerships  
towards a low carbon future, effective management could be  
difficult. What is being measured and why, must be understood  
by all stakeholders, while additional financing is also required to  
support low-carbon power generation, via zero-emissions  
technologies for the electricity sector and the implementation of  
lighting emits about only 1percent and  
commercial sectors have 23 percent and 17 percent respectively  
Figure 10). Therefore, emission reduction policy focused on the  
residential and  
(
industrial sector could reduce overall carbon emission in Johor  
Bahru. The Percentage of Carbon Emission from Transport  
Sector in Johor Bahru is presented in Figure 10. Cars and  
2
Motorcycles produced the highest levels of CO emission of 47  
percent and 43 percent respectively, while the Buses, Taxis and  
Hired & Drive vehicles registered in the city have very negligible  
amount of emission. This is probably due to high levels of Cars  
and Motorcycle ownership in the city. Therefore, encouraging  
policies that target these sectors could achieve significant  
reduction in level of carbon emission.  
Domestic/  
Residential  
Street  
Lighting  
2
3%  
1
%
2
strategies to eliminate transport CO emission.  
Major policy implications to achieve low carbon development in  
Johor Bahru will be to substitute the fossil fuel components of the  
electricity generation by introducing Biogas and Biomass energy  
source which the country has in very large quantities (Palm oil  
plantation) so as to reduce the emission factor of the electricity  
supply and carbon emission from the electricity sector.  
Industry  
9%  
Commercial  
17%  
5
The high energy-intensive transport sector in Johor Bahru has  
higher global warming potentials. Focusing on policies that  
encourage investments in energy efficient transport system and  
improving the public transport sectors, such as using modern  
technology to retrofit existing stock of public buses could make  
the sector attractive. Promoting ‘lowinterest-loans’ that favor the  
purchase of hybrid cars and other conventional best practice  
strategies could also favor emission reduction in the city.  
Figure 10: Percentage of CarbonEmission from Electricity Sector in  
Johor Bahru (Source: Researcher’s field work (2015))  
MUCET is user-friendly, less complicated and less  
cumbersome compared to its counterparts. The challenge of data  
collection especially for transport can be overcome by  
encouraging transport owners to keep log-books that record  
vehicular movements throughout the year. Some reduction in  
vehicle license fees can be arranged as incentives in exchange for  
submission of such records. Finally, the tool could be improved  
further such that vehicle owners can send information online as  
soon as the vehicle is fuelled so as to update the data continuously  
similar to the online carbon calculator.  
Among other strategies to achieve energy efficiency in the  
transport sector is the ‘Clean Fuels and Vehicles which may  
involve converting to compressed natural gas (CNG) to reduce  
2
CO emissions. Lower energy intensities are experienced in  
countries with high energy prices [37], therefore, Integrated  
Urban Road Pricing may equally be promising in Johor Bahru.  
Similarly, the ‘Bus Rapid Transit Systems is popular and is  
revolutionizing the bus systems around the world. Promoting the  
Bus Rapid Transit Systems in Johor Bahru will improve  
250  
reliability and convenience of the public bus transport systems,  
increase capacities and attract high ridership levels and also assist  
to promote low carbon development in a profitable and efficient  
manner. Similarly, investment in the pedestrian and bicycle  
facilities by building more infrastructures dedicated to  
pedestrians and bicycles will encourage a safer and healthier  
Authors’ contribution  
All authors of this study have a complete contribution for data  
collection, data analyses and manuscript writing.  
References  
1
Stern N. (2009). Low-carbon growth: The only sustainable way to  
overcome world poverty. The World Bank. IBRD.IDA Accessed  
2
environment and reduce emission of CO from the transport  
sector.  
online  
http://blogs.worldbank.org/climatechange/low-carbon-  
The use of alternative means of transportation such as walking  
and cycling for short distances within city centers are cheaper,  
healthier, and less harmful with zero emissions. in recent times,  
this is a popular trend among many cities worldwide and it assists  
to decongest traffic and creates harmony. Johor Bahru municipal  
authority should embark on intensive public campaign and  
enlighten stakeholders about such desirable means of movement  
within the city. Also, it is important to identify areas with high  
potentials of carbon emission, so as to apply suitable mitigation  
methods along the corridors.  
The political will through effective, appropriate policies are  
essential to drive change. The ability to change the mind-set of  
the individual consumers in Johor Bahru to recognize and  
appreciate the link between consumption pattern and  
environmental impact is essential to promoting low carbon  
development in the city. Achieving steady movement into the  
clean energy future requires measurement and monitoring  
progress of agreed variables of the energy system to make other  
energy policies of the government feasible within of each demand  
sector. A key step to this could be achieved through simple  
method of carbon inventory as offered by the proposed tool -  
MUCET.  
growth-only-sustainable-way-overcome-world-poverty (Accessed  
October, 2015)  
Nakhooda, S. (2008). Catalyzing Low Carbon Development? The  
Clean Technology Fund. WRI Working Paper. World Resources  
2
3
IPCC, (2007), Intergovernmental Panel on Climate Change. Climate  
Change 2007: The Physical Science Basis. Summary for  
Policymakers. Fourth Assessment Report of the Intergovernmental  
Panel  
Feb.  
2007.  
4
5
6
IPCC. (2014). Intergovernmental Panel on Climate Change. Climate  
Urban, F. and Nordensvard, J. (Ed.). 2013. Low-Carbon  
Development key issues in environmental sustainability. Routledge  
taylor& Francis Group London and New York.  
IUE. (2010). Study on Low Carbon Development and Green Jobs in  
China Institute for Urban and Environmental Studies (IUE),  
Academy of Social Sciences (CASS) & ILO office for China and  
Mongolia April 2010  
Zheng, Y. (2010). Low Carbon Development and Green Jobs in  
China. Institute for Urban and Environmental Studies (IUE), Chinese  
Academy of Social Sciences (CASS). ILO office for China and  
Mongolia April 2010.  
7
8
Finally, in addition to promoting green economy, the government  
of Johor Bahru should focus on direct reduction of CO emission  
2
by using the simple and user-friendly tool (MUCET) to monitor  
the city’s carbon emission and to analyze emission inventories on  
transport and electricity energy consumption which accounts for  
Colenbrander, S. Gouldson, A. Sudmant, A.H. Papargyropoulou, E.  
Chau, L.W. & Ho, C. S. (2015): Exploring the Economic Case for  
Early Investment in Climate Change Mitigation in Middle Income  
Countries:  
Blair, T. ( 2003): Energy White Paper our future- creating a low  
carbon economy.  
0 OECD, IEA, (2010). Low Emission Development Strategies. OECD  
Publishing. Available at: http://www.oecd.org/env/cc/46553489.pdf  
(Accessed September 15, 2020)  
1 Bulkeley, H. Schroeder, H. Janda, K. Zhao, J. (2009): Cities and  
Climate Change: The role of institutions, governance and urban  
planning. 5th World Bank Urban Research Symposium on Climate  
Change 28-30 June 2009, Marseille.  
2 The World Bank (2010): Cities and climate change: An Urgent  
Agenda. Urban Development Series Knowledge Papers. The  
International Bank for Reconstruction and Development/The World  
Bank,1818 H Street NW.Washington DC 20433.  
9
1
2
greater portion of total CO emission of the city.  
Acknowledgment  
This research was sponsored by the Government of Malaysia  
through the Ministry of Higher Education, Malaysia. The paper  
enjoyed great contributions and review from the Department of  
Urban Studies and Planning (DUSP), Massachusetts Institute of  
Technology, MIT, USA. The researcher is honored and privilege  
to participate in the Malaysia Sustainable Cities Program (MSCP)  
1
1
2
015/2016 collaboration between Universiti Teknologi  
Malaysia, (UTM), Malaysia and Massachusetts Institute of  
Technology (MIT), USA.  
13 Jiusto, J. S. (2008). An indicator framework for assessing US state  
carbon emissions reduction effort (with baseline trends from 1990 to  
2
001),  
Energy  
Policy  
36  
(2008)  
2234-2252.  
Ethical issue  
https://doi.org/10.1016/j.enpol.2008.02.034  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
1
4 Eleventh Malaysia Plan 2016-2020 (2015). Anchoring Growth On  
People Economic Planning Unit, Prime Minister’s Department, Block  
B5 & B6, Federal Government Administrative Centre, 62502  
Putrajaya. MALAYSIA. http://www.epu.gov.my. Printed by  
Percetakan Nasional Malaysia Berhad, Kuala Lumpur, 2015.  
www.printnasional.com.my  
(
avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
submitted work is original and has not been published elsewhere  
in any language.  
1
5 Summary for Policymakers (2012), Low Carbon Society Blueprint  
for  
Iskandar  
Malaysia  
2025.  
Available  
at  
:
https://www.nies.go.jp/unfccc_cop/2014/4.4.pdf  
September, 15, 2020)  
16 Ho, C.S., Chau L.W., Teh B.T., Matsuoka Y., Gomi K., Rohayu A.,  
Nadzirah J., NurSyazwani S., Muhammad Akmal Hakim H. and Lv  
Y. (eds.) (2015) Low Carbon Society Action Plan for Johor Bahru  
(Accessed  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
2
025: Vibrant World Class Cosmopolis of the South. Johor Bahru:  
251  
UTM-Low Carbon Asia Research Centre. Available at:  
https://www.greengrowthknowledge.org/sites/default/files/download  
s/resource/Low%20Carbon%20Society%20Blueprint%20For%20Is  
kandar%20Malaysia%202025%20Summary%20for%20Policymake  
rs.pdf (Accessed September, 15, 2020)  
on Sustainable Development. (UNCSD) Powerpoint presentation  
30April-11 May 2007.  
35 Gomi, K. and Simson, J. (2010). Extended Snapshot Tool, ExSS  
(Kyoto University) PowerPoint presentation, UniversitiTeknologi  
Malaysia (UTM) Malaysia, Sept 09, 2010.  
1
7 Low-Carbon City (2025). Sustainable Iskandar Malaysia. Sponsored  
by vice chancellor council & Japan society for the promotion of  
science. The planning of urban energy and environmental systems  
36 USEPA (2006). United States Environmental Protection Agency.  
Greenhouse Gas Emissions from the U.S. Transportation Sector,  
1990-2003.Washington, DC  
(Group VII.)Universiti Teknologi Malaysia. Kyoto University.  
37 Su, M., Li, R., Lu, W., Chen, C., Chen, B., Yang, Z. (2013).  
Okayama University. Ritsumeikan University. Available at:  
http://2050.nies.go.jp/report/file/lcs_asialocal/iskandarlcs.pdf  
Evaluation  
of  
a
low-carbon  
city:  
method  
and  
1171-1185.  
(Accessed September, 15, 2020)  
1
1
2
8 Abdul-Azeez, I.A. (2012) The Development and Application of  
Malaysian University Carbon Emission Tool (MUCET) towards  
Creating Sustainable Campus. Ph.D. Thesis, UTM, Johor.  
9 Jebaraj, S., Iniyan, S. (2006). A review of energy models. Renewable  
and  
reviews, 10(4),  
281-311.  
0 Jiusto, J. S. (2003). Spatial Indeterminacy and Power Sector Carbon  
Emissions Accounting. Ph.D. Thesis. Faculty of Clark University,  
Worcester,Massachusetts,  
https://search.proquest.com/openview/77b4d81752a80684dc54a8c3  
7e75c81/1?pq-origsite=gscholar&cbl=18750&diss=y (Accessed  
September, 15, 2020)  
USA.  
Availabel  
at:  
8
2
2
1 Caves J., Leano M., Lee J., Tupper A., (2007). Leaving Tracks:  
Measuring the Carbon Footprint of Rice University Students: Carbon  
Footprint Group, Spring 2007.  
2 Hare, W. L. (2009). A safe landing for the climate. Worldwatch  
Institute, State of the World, 13-29. Available at: https://climate-  
institute.webstarts.com/uploads/Hare_chapter.pdf  
September, 15, 2020)  
(Accessed  
2
2
2
2
3 Hardy, D. (2008) Cities that don't cost the earth Published by Jon  
Land for TCPA in Housing and also in Communities, Local  
Government Monday 2nd June 2008.  
4 Arrow K. J. (2007) Global Climate Change: A Challenge to Policy,  
ECOMNOMIC VOICE, The Berkeley Electronic Press,  
5 Pope, J., Annandale D., Morrison-Saunders 2004). Conceptualising  
Sustainability Assessment, Environmental Impact Assessment  
Review, 24, 95-616. https://doi.org/10.1016/j.eiar.2004.03.001  
6 Sheng, P. and Ding L. (2015): Low-carbon development and carbon  
reduction in China. ISSN: 1756-5529 (Print) 1756-5537 (Online)  
Journal homepage: http://www.tandfonline.com/loi/tcld20 (Accessed  
September 2015)  
2
7 Abdul-Azeez, I.A. and Ho, C.S. (2015) Realizing Low Carbon  
Emission in the University Campus towards Energy Sustainability.  
Efficiency,  
4,  
15-27.  
2
2
3
8 UNEP (2011). United Nations Environment Programme, Towards a  
Green Economy: Pathways to Sustainable Development and Poverty  
Eradication.  
9 Ho C.S and Matsuoka Y. 2013. The Low Carbon Society Blueprint  
for Iskandar-Malaysia 2025 Summary for Policymakers. UTM-Low  
Carbon Asia Research Center. ISBN:978-967-11889-0-3  
0 Ho, C.S., Boyd, J. (2015). Oral interview with Professor Ho, Chin  
Siong (Director) UTM Low Carbon Society Office on 21st October  
2
015 and James Boyd (Director) Iskandar Regional Development  
Authority (IRDA), on 19th November, 2015 in Johor Bahru,  
Malaysia.  
3
3
1 SEDA (2015) Sustainable energy development authority. Availabel  
at:  
http://www.seda.gov.my/?omaneg=00010100000001010101000100  
0
01000000000000000000000&s=540  
2 UN Habitat (2016). Climate Change.  
Available at:  
Http://unhabitat.org/urban-themes/climate-change/.UN Habitat For  
A Better Urban Future. (Accessed 18 May 2016).  
3
3
3 Worldwatch Institute Report (2008), Making Better Energy Choices,  
www.worldwatch.org  
4 Miyashita M., Shukai, P.R., Kainuma M. (2007). Introduction of  
AIM/Energy Snapshot Tool (ESS). The United Nation Commission  
252