Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 85-94  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/9(1)94  
Mg-Cr Layered Double Hydroxide with Intercalated  
Oxalic Anion for Removal Cationic Dyes Rhodamine  
B and Methylene Blue  
1
1
2
3
1*  
Arini Fousty Badri , Neza Rahayu Palapa , Risfidian Mohadi , Mardiyanto , Aldes Lesbani  
1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Jl. Palembang-Prabumulih, Km. 32, Ogan Ilir, South  
Sumatra, Indonesia  
Department of Environmental Science, Graduate School, Sriwijaya University, Jl. Padang Selasa No. 524 Ilir Barat 1, Palembang-South Sumatra, Indonesia  
2
3
Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Sriwijaya University, Jl. Jl. Palembang-Prabumulih, Km. 32, Ogan Ilir 30662,  
South Sumatra, Indonesia  
Received: 25/07/2020  
Accepted: 13/10/2020  
Published: 20/03/2021  
Abstract  
A MgCr-based layered double hydroxide (LDH) was synthesized by a coprecipitation method, followed by an intercalation process  
using an oxalic anion. The materials were characterized using X-ray diffraction analysis, FT-IR spectroscopy, and pH pzc measurement.  
The materials were then applied as adsorbents for removal of methylene blue (MB) and rhodamine B (RhB) from aqueous solution. Pristine  
1
Mg/Cr LDH exhibited RhB adsorption capacity of 32.154 mg g⁻ , whereas the use of intercalated Mg/Cr LDH caused an increase in the  
1
capacity (139.526 mg g⁻ ). Kinetic studies indicated that the dye adsorption using both LDHs followed a pseudo-second-order kinetic  
1 1  
model; the K values of pristine and modified Mg/Cr LDH for RhB and MB were 6.970, 0.001, 0.426, and 2.056 g mg min ,  
2
respectively. The thermodynamic study identified that the adsorption of both dyes onto the LDHs was a spontaneous process and can be  
classified as physical adsorption with adsorption energies of <40 kJ/mol. Moreover, the desorption and regeneration experiments indicated  
the high economic feasibility and reusability of the LDHs. By using HCl as the optimal solvent, the LDHs could desorb as much as 98% of  
the dye and could be used as adsorbents with high adsorption capacity over three cycles.  
Keywords: Layered double hydroxide, MgCr, rhodamine B, methylene blue, intercalation  
1
Various adsorbents have been used to remove dyes from  
1
Introduction  
wastewater such as bentonite [9], kaoline, activated carbon,  
zeolites, and hydrotalcite [1012]. Hydrotalcite is a class of clay  
materials and serves as effective sorbents [13,14]. However, to  
achieve high efficiency for dye adsorption, hydrotalcite must be  
modified using an intercalating process with organic [15] or  
inorganic anions to increase its surface area [16]. Hydrotalcites  
have been extensively modified to impart high adsorption  
capacity and efficiency; such modification methods include  
The contamination of water bodies due to dyes negatively  
affects the ecological system and human health [1]. Industrial  
activities such as production of textile, paper, and rubber use  
reactive synthetic dyes [2,3]. Such dyes are harmful organic  
pollutants because of their carcinogenic effects [35]. Dye  
contaminants are synthetic dyes that are non-biodegradable;  
therefore, it is recommended to remove such pollutants from  
wastewater before being discharged into natural water [6].  
Several methods have been employed to remove dyes from  
wastewater, such as ion exchange, filtration, membrane  
separation, electrochemical degradation, and adsorption  
methods. Among these methods, adsorption is a suitable method  
to remove dyes from wastewater because of its low cost and  
high efficiency and because it involves a simple treatment.  
Moreover, adsorption efficiency depends on the adsorbent [7,8].  
2 4  
development of LDH-MnFe O hybrid materials [17] and  
intercalation of LDHs with aromatic acid anions [18].  
Anionic synthetic clay layered double hydroxides (LDHs)  
consist of divalent and trivalent brucite-like layers that have a  
positive charge and an anion functioning as a counterion. These  
II  
III  
x
compounds have  
a
2
general formula of [M (1−x)  
M
x+  
x/n  
-
(
2
OH)  
2
] (An ) ·mH  
O, where An is the intercalated anion [19–  
1]. The anion in the interlayer of the LDH can be replaced,  
under suitable conditions, with inorganic ions such as nitrate,  
carbonate [22], and sulfate ions in order to enhance the  
interlayer. Modified LDHs have applications in various fields,  
especially in dye removal. According to Santos et al., calcined  
LDH was used to adsorb acid yellow 42 in aqueous solutions  
Corresponding author: Aldes Lesbani, Department of  
Chemistry, Faculty of Mathematics and Natural Sciences,  
Sriwijaya University, Jl. Palembang-Prabumulih, Km. 32, Ogan  
Ilir, South Sumatra, Indonesia. E-mail: Corresponding author:  
aldeslesbani@pps.unsri.ac.id  
[23]. Deng et al. [24] reported the use of sodium-dodecyl-  
sulfate-intercalated and acrylamide-anchored LDH for the  
85  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 85-94  
removal of Congo red. In contrast, Xu et al. prepared  
polyoxometalate-intercalated ZnAlFe LDH, which exhibited  
improved adsorption capacity for cationic dye removal [14].  
Similarly, Li et al. used a magnetic core-shell dodecyl-sulfate-  
intercalated LDH nanocomposite to adsorb cationic and anionic  
organic dyes [25].  
then heated at 80 °C for 24 h.  
2.2 Intercalation of Mg/Cr LDH with Oxalic Anion  
Mg/Cr LDH intercalated with oxalic anions was prepared by  
the ion-exchange method. As much as 50 g of Mg/Cr LDH was  
mixed with water, and the solution was stirred for 60 min under  
a nitrogen atmosphere. The LDH mixture was then added to a  
solution of oxalic acid. The pH of the mixture was adjusted to 9  
In this study, Mg/Cr LDH was synthesized by  
a
coprecipitation method. The LDH was modified by intercalating  
2-  
oxalate anions (C  
O
2 4  
) into the interlayer space of hydrotalcite  
using NaOH. The suspension was stirred for 24 h under a N  
2
atmosphere and dried at 100 °C.  
via anion exchange. The pristine and intercalated LDHs were  
then applied as adsorbents for removal of rhodamine B (RhB)  
and methylene blue (MB). The structures of these dyes are  
presented in Fig. 1. The adsorption of the dyes using the  
intercalated LDH material was then optimized by varying the  
2.3 Adsorption of Methylene Blue and Rhodamine B using  
Mg/Cr LDH and Intercalated Mg/Cr LDH  
First, 0.02 g of LDH was added to 20 mL of MB and RhB,  
each having a concentration of 70 mg/L. The adsorption studies  
were carried out under stirring over different durations (5120  
min). After stirring, the suspensions were separated by  
centrifugation at 3000 rpm for 10 min and examined via UV-Vis  
spectrophotometry at 662 nm for methylene blue and 555 nm for  
rhodamine B. After equilibrium was reached, 0.5 g of LDH was  
used to adsorb the dyes at different dye concentrations (1060  
mg/L) and temperatures (303333 K).  
contact time, initial concentration, and temperature.  
A
desorption process was conducted to determine a suitable  
solvent using several organic solvents, followed by regeneration  
over three cycles.  
2
.4 Desorption and Regeneration of Methylene Blue and  
Rhodamine B using Mg/Cr LDH and Intercalated Mg/Cr LDH  
desorption process was performed to examine the  
A
efficiency of the adsorbent. First, 0.5 g of LDH was added to 50  
mL of MB and RhB (100 ppm) and shaken for 120 min. Then,  
the dye concentration in the filtrate was determined by UV-Vis  
spectrophotometry, followed by drying of the adsorbent for 2 h.  
The residue (0.01 g) was shaken in 10 mL solvent (HCl, NaOH,  
hydroxylamine hydrochloride, water, and Na-EDTA) for 120  
min. The filtrate was examined via UV-Vis spectrophotometry.  
The regeneration process was carried out using three cycles of  
the adsorptiondesorption process.  
(
a)  
(b)  
Figure 1: Structures of (a) rhodamine B and (b) methylene blue  
2
Materials and Methods  
The chemicals used in this study were Mg(NO  
3
)
2
6H  
·9H  
CO  
2
O
(
Sigma-Aldrich,  
400.15  
g/mol),  
Cr(NO  
3
)
3
2
O
EMSURE ACS, Reag. Ph Eur, 256.41 g/mol), Na  
EMSURE ACS, Reag. Ph Eur, 126.07 g/mol), NaOH  
2
3
3
Results and Discussion  
The diffraction patterns of the pristine and modified Mg/Cr  
EMSURE ACS, Reag. Ph Eur, 40 g/mol), HCl  
®
MallinckrodtAR , 37%), and H C O ·2H O (EMSURE ACS,  
2 2 4 2  
LDHs are shown in Fig. 2. The diffractogram of the pristine  
Mg/Cr LDH (Fig. 2a) consisted of both sharp and symmetrical  
peaks and some high-intensity asymmetrical peaks. This result  
explains the highly crystalline and ordered layered structure of  
Mg/Cr LDH. The typical pattern corresponding to hydrotalcite is  
evident, which is a set of four reflection lines at 2θ = 11°, 22°,  
Reag. Ph Eur, 126.07 g/mol). All chemicals were used as  
received without further purification. X-ray diffraction (XRD)  
analysis was performed using  
diffractometer, and the sample was scanned at 10°/min The  
BrunauerEmmettTeller (BET) surface area was measured  
using a Quantachrome adsorptiondesorption apparatus. The  
sample was degassed prior to analysis at 77 K. Fourier transform  
infrared (FT-IR) spectroscopy was performed using a Shimadzu  
Prestige-21 device, with the use of KBr pellets; each sample was  
a Rigaku Miniflex-6000  
36°, and 60° that are ascribed to the reflections of the (003),  
(
006), (115), and (110) basal planes, respectively. The interlayer  
distance of the pristine LDH was 7.62 ꢀ (Fig. 2a). The XRD  
pattern of Mg/Cr-oxalate LDH exhibits a lower intensity than  
that before intercalation, indicating a decrease in the crystallinity  
of the LDH interlayer due to the presence of oxalate (Fig. 2b).  
The (003) reflection suggests that the reflection shifted to lower  
angles which indicated an increase in the basal spacing of  
Mg/Cr-oxalate LDH (11.35 Å). The peak shift from  = 11° to  
1
analyzed at wavenumbers in the range of 4004000 cm . The  
concentrations of the dyes were measured using a Biobase BK  
800 UV-Visible spectrophotometer.  
1
2
.1 Synthesis Mg/Cr LDH  
Mg/Cr LDH was synthesized by a coprecipitation method.  
10° indicates the replacement of nitrate ions with oxalate ions in  
First,  
a
3 2 2  
solution of Mg(NO ) 6H O was mixed with  
9H O (3:1) and stirred for 30 min. A solution of  
(1 M) and NaOH (2 M) was added to the reaction  
the interlayer. Hence, the intercalation process with the oxalate  
anion was successful, and significant interlayer separation was  
achieved.  
Cr(NO  
3
)
3
2
2 3  
Na CO  
mixture. The mixture was then mixed under continuous stirring  
until a precipitate was formed, and then the pH of the solution  
was adjusted to 10 using NaOH. The reaction was maintained at  
8
0 °C for 24 h to produce Mg/Cr LDH. The solid material was  
86  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 85-94  
Figure 2: X-ray Powder diffraction patterns of Mg/Cr LDH (a) and  
intercalated Mg/Cr LDH(b)  
Figure 4: FT-IR spectra of Mg/Cr LDH (a) and intercalated Mg/Cr LDH  
(b)  
Figs. 3a and b show the graphs of the BET curves of Mg/Cr  
LDH and intercalated Mg/Cr LDH; these graphs indicated that  
both materials followed type IV isotherm patterns according to  
IUPAC classifications and that the materials were mesoporous;  
occurrence of hysteresis was also confirmed. The materials  
Mg/Cr and intercalated Mg/Cr LDH contained mesopores that  
were 250 nm in size, based on IUPAC classifications. The  
isotherms of both Mg/Cr LDH and intercalated Mg/Cr LDH  
were ascribed to type H2 because the material contained large  
mesopores [26]. Table 1 summarizes the surface areas and pore  
sizes of Mg/Cr LDH and intercalated Mg/Cr LDH. The results  
indicated an increase in the surface area by as much as 26.1153  
Fig. 4 presents the FT-IR spectra of the materials. All samples  
exhibited broad bands at around 3400 cm⁻ , indicating the  
1
presence of an OH group. This band may be attributed to the  
hydroxyl group of water molecules, and the interlayer anions  
could also account for the broadening of this band. The bending  
1
mode of water gave rise to a rather weak band around 1635 cm⁻  
in the FT-IR spectra of Mg/Cr LDH (Fig. 4a). The vibrational  
modes of the interlayer nitrate ions are indicated by the peak at  
1
1
381 cm . This spectrum is observed for every hydroxide  
irrespective of nature. The octahedral sheets suggest a rather  
symmetric environment for the interlayer anions. The absorption  
1
2
peaks below 1000 cm correspond to M-O and M-O-M  
m /g after intercalation, which resulted in a decrease in the pore  
diameter of the LDH.  
vibrations. The presence of oxalate anions in the LDH was  
1
confirmed by the presence of a peak at 1381 cm (Fig. 4b),  
which could be assigned to the stretching modes of the  
carboxylate group.  
Furthermore, the relatively weak peaks at 779 and 594 cm1  
correspond to the carbon-oxygen bond in the carboxyl group  
[27]. In addition, the strong absorption peak of the nitrate anions  
in Fig. 4a decreased after the ion-exchange reaction (Fig. 4b).  
This result indicated that oxalate anions replaced the  
interlamellar nitrate anions, as previously evidenced by X-ray  
analysis.  
The stabilities of the pristine and modified LDHs were  
determined by pH point zero charges (pzc), as shown in Fig. 5.  
The pristine and modified LDHs prior to use as dye adsorbents  
were examined using pH pzc to determine the charge of the  
materials. As shown in Fig. 5, the cross point was identified at  
pH 9 for both pristine and modified LDHs. A pH of 9 was  
ascribed to the material when it has no charge. As such, the  
materials have positive charges below pH 9 and negative  
charges above pH 9.  
Figure 3: N  
2
Adsorptiondesorption of Mg/Cr LDH (a) and intercalated  
Mg/Cr LDH (b)  
87  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 85-94  
where q  
min), q  
equilibrium, k  
t
(mg/g) is the concentration of dye adsorbed at time t  
(
e
(mg/g) is the concentration of dye adsorbed at  
is the rate constant of first-order sorption, and k  
1
2
is the rate constant of pseudo-second-order (PSO) sorption. The  
results of such calculations are shown in Table 2. This table  
shows that the sorption of the dyes on pristine LDH and  
modified LDH conform to the PSO kinetic model. The results  
suggest that interactions between the sorbate and sorbent were  
presented.  
Figure 5: pH pzc graphs of Mg/Cr LDH (a) and intercalated Mg/Cr LDH  
(b)  
The results of the adsorption of MB by MgCr LDH and  
-
MgCrC O LDH, which was conducted at pH 9, are shown in  
2 4  
Fig. 6. The adsorption equilibrium was reached after 70 min  
with a MB uptake of 4.9 mg/L for pristine LDH and 6.5 mg/L  
for the modified LDH. This contact time was considered optimal  
for the next experiment. The adsorption of RhB using modified  
LDH, as shown in Fig. 7, improved slightly and reached  
equilibrium after 70 min; equilibrium was reached after 20 min  
for pristine LDH. The RhB uptake using the modified Mg/Cr  
LDH was twice that of pristine Mg/Cr LDH, with each  
adsorbing 43 mg/L and 19 mg/L of RhB, respectively. The  
effect of contact time on the adsorption of dyes on pristine and  
modified Mg/Cr LDHs was shown in Fig. 8. The amount of dye  
adsorbed by LDHs notably increased with increasing contact  
time. However, the sorption rate of the dyes on the pristine LDH  
was slightly lower than that on the modified LDH. The kinetics  
results indicate that the modified LDH exhibited a higher  
sorption efficiency for both dyes. Pseudo-first-order and pseudo-  
second-order kinetic models were applied to determine the  
kinetic sorption process; such models are respectively expressed  
as follows:  
Figure 6: Time variation of adsorption of methylene blue on Mg/Cr  
LDH (a) and intercalated Mg/Cr LDH (b)  
Figure 7: Time variation adsorption of rhodamine B on Mg/Cr LDH (a)  
and intercalated Mg/Cr LDH (b)  
ln (q  
e
−q  
t
) = lnq  
e
k  
2) + (1/q  
) t,  
e
1
t
(1)  
(2)  
t/qt = 1/(k  
2
q
e
Table 2: Kinetic parameters of dyes adsorption onto Mg/Cr-LDH and intercalated Mg/Cr LDH  
PFO  
PSO  
LDH  
-
1
R2  
K
2
(g mg min-1)  
R2  
Co (mg/L)  
qe (mg/g)  
41.572  
47.022  
7.786  
K
1
(min )  
qe(mg/g)  
0.409  
Mg/Cr  
Rh-B  
Rh-B  
MB  
50  
50  
10  
10  
0.003  
0.056  
0.040  
0.081  
0.801  
0.897  
0.935  
0.904  
6.970  
0.426  
0.001  
2.056  
0.9878  
0.988  
0.940  
0.992  
Mg/Cr-oxalate  
Mg/Cr  
2.350  
10.225  
0.486  
Mg/Cr-oxalate  
MB  
10.022  
88  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 85-94  
The data on the effect of dye concentration and temperature,  
as shown in Figs. 8 and 9. It can be observed that increasing the  
concentration and temperature would increase the amount of dye  
adsorbed on both pristine and modified LDHs. There is a  
specific increase in the concentration of adsorbed RhB at 30  
mg/L (Fig. 8a), which is probably due to the physical adsorption  
of RhB as the interaction between the sorbate and sorbent was at  
equilibrium. The increasing trend for the adsorption isotherm of  
RhB on modified LDH was determined from the data in Fig. 8a  
using Langmuir and Freundlich equations. Fig. 8b exhibits a  
similar behavior for the adsorption of RhB, which was at a  
concentration of 15 mg/L, as observed for the curves with  
increasing temperature.  
Figure 9: MB uptake by initial concentration at several temperatures by  
Mg/Cr LDH (a) and intercalated Mg/Cr LDH (b)  
The Freundlich isotherm indicates a multilayer adsorption  
process. Based on the adsorption capacity of RhB on pristine  
and modified Mg/Cr LDHs, an increase in temperature is  
correlated with increasing adsorption capacity at equilibrium, as  
summarized in Table 3. The adsorption data of MB on pristine  
and modified Mg/Cr LDH is summarized in Table 4. The data  
indicates that the adsorption using pristine and modified Mg/Cr  
LDHs was best represented by the Freundlich isotherm. The  
increase in temperature caused the adsorption capacity to be  
higher at 333 K than at room temperature. The maximum  
adsorption capacities for both dyes using modified Mg/Cr LDH  
were higher than those using pristine Mg/Cr LDH. According to  
Leon et al. [28], the higher content of available carboxylic  
groups promotes electrostatic interactions between the sorbate  
and sorbent. summarized in Tables 5 and 6. The data in Tables 5  
and 6 indicate increasing adsorption capacity with increasing  
temperature in the range of 303333 K. The adsorption process  
was described by thermodynamic parameters such as Gibbs free  
energy, enthalpy, and entropy, which can be expressed in a  
single equation as follows:  
Figure 8: RhB uptake by initial concentration at various temperatures by  
Mg/Cr LDH (a) and intercalated Mg/Cr LDH (b)  
The results of the adsorption of MB onto pristine LDH and  
modified LDH are shown in Fig. 9. For the adsorption of MB on  
both adsorbents, the difference in dye uptake at different  
temperatures was not significant. As shown in Fig. 9a, the  
adsorption rate of MB on pristine LDH was 23 mg/g at 333 K,  
which indicated a higher adsorption capacity. Tables 3 and 4  
summarize the isotherm parameters for the adsorption of the  
dyes on pristine LDH and modified LDH. The adsorption  
isotherm data for RhB is shown in Table 5. The data indicated  
that the isotherm was best represented by the Freundlich  
isotherm.  
G = H-TS  
(3)  
where G is the change in Gibbs free energy (kJ/mol), S is the  
change in entropy (kJ/mol), andH is the change in entropy  
(
kJ/mol).  
89  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 85-94  
Table 3: Isotherms parameter of adesorption rhodamine B onto Mg/Cr-LDH and intercalated Mg/Cr LDH  
T(K)  
LDH  
Adsorption isotherm  
Langmuir  
Adsorption constant  
3
03  
313  
323  
333  
Mg/Cr  
Q
max  
L
20.960  
0.023  
0.723  
0.744  
1.909  
0.947  
74.828  
0.003  
0.020  
1.039  
1.109  
0.930  
27.855  
28.011  
32.154  
K
0.03  
0.034  
0.684  
0.642  
2.279  
0.914  
120.482  
0.010  
0.135  
0.900  
1.084  
0.912  
0.032  
0.665  
0.67  
R2  
N
0.637  
0.75  
Freundlich  
Langmuir  
Freundlich  
K
F
1.758  
0.866  
77.778  
0.004  
0.067  
0.945  
1.106  
0.962  
1.866  
0.896  
139.526  
0.029  
0.659  
0.661  
1.691  
0.913  
R2  
Mg/Cr - Oxalate  
Q
max  
K
L
R2  
N
K
F
R2  
Table 4: Isotherms parameter of adsorption methylene blue onto Mg/Cr-LDH and intercalated Mg/Cr LDH  
T(K)  
LDH  
Adsorption isotherm  
Adsorption constant  
303  
313  
323  
333  
Mg/Cr  
Langmuir  
Q
max  
L
1.636  
1.323  
0.926  
0.446  
2.912  
1.517  
5.131  
0.955  
0.497  
1.625  
1.452  
1.534  
0.938  
0.572  
1.142  
1.538  
1.195  
0.964  
0.629  
2.160  
K
R2  
N
Freundlich  
K
F
R2  
0.991  
0.993  
0.981  
0.980  
Mg/Cr Oxalate  
Langmuir  
Q
max  
8.741  
0.107  
0.814  
0.501  
1.957  
0.961  
4.854  
0.934  
0.918  
0.630  
7.638  
0.938  
2.879  
0.771  
0.902  
0.644  
7.132  
0.877  
2.625  
0.851  
0.784  
0.562  
2.160  
0.981  
K
L
R2  
N
Freundlich  
K
F
R2  
The amount of dye adsorbed as a function of temperature is  
the H and S values were determined from the y-intercept and  
slope (eq. 3), respectively, as listed in Tables 5 and 6. The S  
values were positive, which indicated an increase in randomness  
during the ongoing process. The positive H values indicated  
that the adsorption was endothermic and proceeded via a  
physisorption process. The likelihood of the adsorption  
proceeding via a physisorption process was supported by the G  
values which were within the range of 200 kJ/mol. The  
negative Gibbs free energy values indicate that the adsorption  
was spontaneous. In addition, the H values calculated in this  
study (−20 kJ/mol) are consistent with the hydrogen bond and  
dipole bond forces of the adsorbent. The adsorption capacities  
for MB and RhB in this study are comparable to those of other  
adsorbents reported in previous literature, which are listed in  
Table 7.  
90  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 85-94  
Table 5: Thermodynamic adsorption parameter of rhodamine B onto Mg/Cr-LDH and intercalated Mg/Cr LDH  
T (K)  
C
H (kJ/mol)  
S (kJ/mol)  
G (kJ/mol)  
-0.362  
H (kJ/mol)  
S (kJ/mol)  
G (kJ/mol)  
0.812  
3
3
3
3
03  
13  
23  
33  
-1.171  
-0.081  
40 mg/L  
24.160  
0.081  
27.883  
0.089  
-1.981  
-0.975  
-2.790  
-1.868  
3
3
3
3
3
3
3
3
03  
13  
23  
33  
03  
13  
23  
33  
-1.255  
-1.582  
-1.910  
-2.238  
-1.350  
-1.876  
-2.401  
-2.927  
-0.180  
-1.076  
-1.973  
-2.869  
-0.229  
-1.043  
-1.857  
-2.671  
5
6
0 mg/L  
0 mg/L  
8.681  
0.033  
0.053  
26.981  
24.437  
0.090  
0.081  
14.584  
Table 6: Thermodynamic adsorption parameter of methylene blue onto Mg/Cr-LDH and intercalated Mg/Cr LDH  
T (K)  
C
H (kJ/mol)  
S (kJ/mol)  
G (kJ/mol)  
-2.145  
-2.453  
-2.761  
-3.070  
-2.581  
-3.396  
-4.211  
-5.026  
-3.871  
-4.187  
-4.502  
-4.817  
H (kJ/mol)  
S (J/Kmol)  
G (kJ/mol)  
-2.972  
-3.568  
-4.163  
-4.758  
-3.209  
-3.722  
-4.234  
-4.746  
-2.840  
-3.179  
-3.518  
-3.857  
3
3
3
3
3
3
3
3
3
3
3
3
03  
13  
23  
33  
03  
13  
23  
33  
03  
13  
23  
33  
0.031  
2
2
3
0 mg/L  
7.198  
15.070  
0.060  
5 mg/L  
0 mg/L  
22.114  
5.682  
0.081  
0.032  
12.311  
7.431  
0.051  
0.034  
Table 7: Comparison of adsorption capacity of some adsorbents for RhB and MB removal  
Dyes  
MB  
RhB  
MB  
RhB  
RhB  
MB  
RhB  
RhB  
RhB  
RhB  
MB  
Adsorbent  
Ti-Al-Si-O  
Nanocomposite Adsorbent  
Nanocomposite SNF/MNP/PS  
Casuarina Equisetifolia Needle (CEN)  
Activated Cotton Stalks (CSAC)  
Adsorption Capacity (mg/g)  
References  
162.96  
142.8  
103.1  
82.34  
133.33  
153.85  
22.47  
324.6  
1,388  
556.9  
936  
(29)  
(30)  
(31)  
(32)  
(33)  
Magnetic Lignosulfonate (MLS)  
Magnetic AC/CeO  
Boron Organic Polymers  
Chitosan graft poly  
(34)  
(35)  
2
(36)  
(37)  
(38)  
RhB  
MB  
MB  
SA/HEC/HA Membrane  
Nanocomposite hydrogel  
18.814  
20.83  
122.5  
RhB  
RhB  
Mb  
RhB  
MB  
62  
32.154  
1.636  
139.526  
8.741  
MgCr  
This work  
This work  
This work  
This work  
Intercalated MgCr  
91  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 85-94  
(
a)  
(
a)  
(
b)  
Figure 11: Regeneration of RhB (a) and MB (b) on MgCr LDH and on  
intercalated Mg/Cr LDH  
4
Conclusion  
MgCr and MgCr intercalated anion oxalate were easily  
prepared by the ion-exchange method. MgCr modified anion  
oxalate has higher adsorbed capacity in equilibrium than pristine  
amount MgCr modified anion oxalic has higher adsorption  
(
b)  
Figure 10: Desorption of RhB (a) and MB (b) on Mg/Cr-LDH and on  
intercalated Mg/Cr LDH  
-1  
capacity than pristine LDH amount from 32.154 mg.g for  
pristine LDH and 139.526 mg.g for intercalated MgCr LDH in  
RhB dye. The adsorption of both sorbents for MB and RhB was  
-1  
The desorption study was conducted in several solvents onto  
MgCr and MgCr modified. Figure 10 shows the y axis is percent  
desorption using RhB onto MgCr and MgCr modified. As our  
best acknowledgment, a few the researchers have focused to  
recovery used material. Several solvent organic, acid, and base  
were conducted in this treatment for suitable solvents (ie, water,  
o
classified as physical adsorption with H value in the range  
under 40 kJ/mol. Moreover, both adsorbents can be reused for  
further adsorption process. This result based on the desorption  
results that the RhB and MB can be desorbed from the adsorbent  
as much as 98%.  
3
HCl, NaOH, HONH Cl and Na-EDTA). The result on Figure 10  
shows that the higher desorption is HCl. In this case, MgCr  
modified has lower desorption than MgCr pristine. we assumed  
that the dye is more trapped in the active site of adsorbents and  
requires a long time to be desorbed. On the other hand, in acid  
solution, the hydrotalcite pristine is more desorbed than  
modified caused the hydrotalcite can be exfoliated (Palapa et al.  
Acknowledgment  
Author thanks to Ministry of Research Technology and  
Higher Education Repulic Indonesia Through “Hibah Penelitian  
Dasar Unggulan Perguruan Tinggi” in Fiscal Year 2019/2020.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
2
020). The regeneration of MgCr LDH and intercalated MgCr  
LDH was investigated by three times cycles. The recycling  
process of LDHs adsorption-desorption was illustrated in Figure  
1
1. The high effectivity of reuse material showed after  
intercalated with oxalic anions than pristine. These phenomena  
caused that LDH pristine can be broken in the acid solution for  
extended uses. The decreases in removal efficiency from LDH  
pristine indicated that the structure of LDH is exfoliated and  
ruined.  
Authors’ contribution  
All authors of this study have a complete contribution for data  
collection, data analyses and manuscript writing  
92  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 85-94  
Layered double hydroxide intercalated with aromatic acid anions for  
the efficient capture of aniline from aqueous solution, J. Hazard.  
Mater. 321 (2017) 111120.  
References  
1
2
3
. F. Zhang, X. Tang, Y. Huang, A. A. Keller and J. Lan, Competitive  
removal of Pb2+ and malachite green from water by magnetic  
phosphate nanocomposites, Water Res. (2019) 442451.  
1
9. N. R. Palapa, Y. Saria, T. Taher, R. Mohadi and A. Lesbani,  
Synthesis and Characterization of Zn/Al, Zn/Fe, and Zn/Cr Layered  
Double Hydroxides: Effect of M3+ ions Toward Layer Formation,  
Sci. Technol. Indones. 4 (2019) 3639.  
0. H. Starukh and S. Levytska, The simultaneous anionic and cationic  
dyes removal with ZnAl layered double hydroxides, Appl. Clay  
Sci. 180 (2019) 05.  
1. M. Shafigh, M. Hamidpour and G. Furrer, Zinc release from Zn-Mg-  
Fe(III)-LDH intercalated with nitrate, phosphate and carbonate: The  
effects of low molecular weight organic acids, Appl. Clay Sci. 170  
. E. H. Elkhattabi, M. Lakraimi, M. Berraho, A. Legrouri, R. Hammal  
and L. El Gaini, Acid Green 1 removal from wastewater by layered  
double hydroxides, Appl. Water Sci. 8 (2018) 111.  
. F. A. Dawodu, C. U. Onuh, K. G. Akpomie and E. I. Unuabonah,  
Synthesis of silver nanoparticle from Vigna unguiculata stem as  
adsorbent for malachite green in a batch system, SN Appl. Sci. 1  
2
2
(2019) 110.  
4
5
. Q. Zhang, Q. Lin, X. Zhang and Y. Chen, A novel hierarchical stiff  
carbon foam with graphene-like nanosheet surface as the desired  
adsorbent for malachite green removal from wastewater, Environ.  
Res. 179 (2019) 108746.  
. S. Boubakri, M. A. Djebbi, Z. Bouaziz, P. Namour, N. Jaffrezic-  
Renault, A. B. H. Amara, M. Trabelsi-Ayadi, I. Ghorbel-Abid and  
R. Kalfat, Removal of two anionic reactive textile dyes by  
adsorption into MgAl-layered double hydroxide in aqueous  
solutions, Environ. Sci. Pollut. Res. 25 (2018) 2381723832.  
. Y. Lu, B. Jiang, L. Fang, F. Ling, J. Gao, F. Wu and X. Zhang, High  
performance NiFe layered double hydroxide for methyl orange dye  
and Cr(VI) adsorption, Chemosphere 152 (2016) 415422.  
(2019) 135142.  
2
2
2. M. N. Sepehr, T. J. Al-Musawi, E. Ghahramani, H. Kazemian and  
M. Zarrabi, Adsorption Performance of Magnesium/Aluminum  
Layered Double Hydroxide Nanoparticles for Metronidazole From  
Aqueous Solution, Arab. J. Chem. 10 (2017) 611623.  
3. R. M. M. dos Santos, R. G. L. Gonçalves, V. R. L. Constantino, C.  
V. Santilli, P. D. Borges, J. Tronto and F. G. Pinto, Adsorption of  
Acid Yellow 42 dye on calcined layered double hydroxide: Effect of  
time, concentration, pH and temperature, Appl. Clay Sci. 140 (2017)  
6
7
1
32139.  
2
4. L. Deng, H. Zeng, Z. Shi, W. Zhang and J. Luo, Sodium dodecyl  
sulfate intercalated and acrylamide anchored layered double  
. F. Mohamed, M. R. Abukhadra and M. Shaban, Removal of safranin  
dye from water using polypyrrole nanofiber/Zn-Fe layered double  
hydroxide nanocomposite (Ppy NF/Zn-Fe LDH) of enhanced  
adsorption and photocatalytic properties, Sci. Total Environ. 640–  
hydroxides:  
removal of Congo red, J. Colloid Interface Sci. 521 (2018) 172–  
82.  
A multifunctional adsorbent for highly efficient  
1
6
41 (2018) 352363.  
2
2
5. Y. Li, H. Y. Bi, Y. Q. Liang, X. M. Mao and H. Li, A magnetic core-  
shell dodecyl sulfate intercalated layered double hydroxide  
nanocomposite for the adsorption of cationic and anionic organic  
dyes, Appl. Clay Sci. 183 (2019) 105309.  
6. M. Oktriyanti, N. R. Palapa, R. Mohadi and A. Lesbani, Indonesian  
Journal of Environmental Management and Sustainability  
Modification Of Zn-Cr Layered Double Hydroxide With Keggin  
Ion, Indones. J. Environ. Manag. Sustain. 3 (2019) 9399.  
7. E. Coronado, C. Martí-Gastaldo, E. Navarro-Moratalla and A.  
Ribera, Intercalation of [M(ox)3]3- (M = Cr, Rh) complexes into  
NiIIFeIII-LDH, Appl. Clay Sci. 48 (2010) 228234.  
8. O. León, A. Muñoz-Bonilla, D. Soto, D. Pérez, M. Rangel, M.  
Colina and M. Fernández-García, Removal of anionic and cationic  
dyes with bioadsorbent oxidized chitosans, Carbohydr. Polym. 194  
8
9
. S. Mallakpour and M. Hatami, An effective, low-cost and recyclable  
bio-adsorbent having amino acid intercalated LDH@Fe3O4/PVA  
magnetic nanocomposites for removal of methyl orange from  
aqueous solution, Appl. Clay Sci. 174 (2019) 127137.  
. T. Taher, D. Rohendi, R. Mohadi and A. Lesbani, Thermal Activated  
of Indonesian Bentonite as A Low-Cost Adsorbent for Procion Red  
Removal from Aqueous Solution, J. Pure Appl. Chem. Res. 7 (2018)  
7
993.  
2
2
1
1
0. H. Zhou, Z. Jiang and S. Wei, A new hydrotalcite-like absorbent  
FeMnMg-LDH and its adsorption capacity for Pb2 + ions in water,  
Appl. Clay Sci. 153 (2018) 2937.  
1. I. Harizi, D. Chebli, A. Bouguettoucha, S. Rohani and A. Amrane, A  
New MgAlCuFe-LDH Composite to Enhance the Adsorption of  
Acid Red 66 Dye: Characterization, Kinetics and Isotherm Analysis,  
Arab. J. Sci. Eng. 44 (2019) 52455261.  
(2018) 375383.  
2
9. U. Pal, A. Sandoval, S. I. U. Madrid, G. Corro, V. Sharma and P.  
Mohanty, Mixed titanium, silicon, and aluminum oxide  
nanostructures as novel adsorbent for removal of rhodamine 6G and  
methylene blue as cationic dyes from aqueous solution,  
Chemosphere 163 (2016) 142152.  
0. M. I. Mohammed and S. Baytak, Synthesis of BentoniteCarbon  
Nanotube Nanocomposite and Its Adsorption of Rhodamine Dye  
From Water, Arab. J. Sci. Eng. 41 (2016) 47754785.  
1. Z. Li, X. Tang, K. Liu, J. Huang, Q. Peng, M. Ao and Z. Huang,  
Fabrication of novel sandwich nanocomposite as an efficient and  
regenerable adsorbent for methylene blue and Pb (II) ion removal, J.  
Environ. Manage. 218 (2018) 363373.  
1
1
1
1
1
1
1
2. K. Abdellaoui, I. Pavlovic, M. Bouhent, A. Benhamou and C.  
Barriga,  
A comparative study of the amaranth azo dye  
adsorption/desorption from aqueous solutions by layered double  
hydroxides, Appl. Clay Sci. 143 (2017) 142150.  
3. S. Yanming, L. Dongbin, L. Shifeng, F. Lihui, C. Shuai and M. A.  
Haque, Removal of lead from aqueous solution on glutamate  
intercalated layered double hydroxide, Arab. J. Chem. 10 (2017)  
S2295S2301.  
4. M. Xu, B. Bi, B. Xu, Z. Sun and L. Xu, Polyoxometalate-  
intercalated ZnAlFe-layered double hydroxides for adsorbing  
removal and photocatalytic degradation of cationic dye, Appl. Clay  
Sci. 157 (2018) 8691.  
5. T. Kameda, H. Takeuchi and T. Yoshioka, NiAl layered double  
hydroxides modified with citrate, malate, and tartrate: Preparation  
by coprecipitation and uptake of Cu 2 from aqueous solution, J.  
Phys. Chem. Solids 72 (2011) 846851.  
6. A. Lesbani, D. R. Maretha, T. Taher, Miksusanti, R. Mohadi and R.  
Andreas, Layered double hydroxides Mg/Fe intercalated H3[α-  
PW12O40]· n H2O as adsorbent of cadmium(II), AIP Conf. Proc.  
3
3
3
3
3
3
2. M. R. R. Kooh, M. K. Dahri and L. B. L. Lim, The removal of  
rhodamine  
equisetifolia needles as adsorbent, Cogent Environ. Sci. 2 (2016) 1–  
4.  
B dye from aqueous solution using Casuarina  
1
3. M. Özdemir, Ö. Durmuş, Ö. Şahin and C. Saka, Removal of  
methylene blue, methyl violet, rhodamine B, alizarin red, and  
bromocresol green dyes from aqueous solutions on activated cotton  
stalks, Desalin. Water Treat. 57 (2016) 1803818048.  
4. J. Geng, F. Gu and J. Chang, Fabrication of magnetic lignosulfonate  
using ultrasonic-assisted in situ synthesis for efficient removal of  
Cr() and Rhodamine B from wastewater, J. Hazard. Mater. 375  
2
049 (2018).  
7. O. Mrózek, P. Ecorchard, P. Vomáčka, J. Ederer, D. Smržová, M. Š.  
Slušná, A. Machálková, M. Nevoralová and H. Beneš, Mg-Al-La  
LDH-MnFe2O4 hybrid material for facile removal of anionic dyes  
from aqueous solutions, Appl. Clay Sci. 169 (2019) 19.  
(2019) 174181.  
5. M. Tuzen, A. Sarı and T. A. Saleh, Response surface optimization,  
8. S. Yu, X. Wang, Z. Chen, J. Wang, S. Wang, T. Hayat and X. Wang,  
93  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 85-94  
kinetic and thermodynamic studies for effective removal of  
rhodamine B by magnetic AC/CeO2 nanocomposite, J. Environ.  
Manage. 206 (2018) 170177.  
37. S. S. Shenvi, A. M. Isloor, A. F. Ismail, S. J. Shilton and A. Al  
Ahmed, Humic Acid Based Biopolymeric Membrane for Effective  
Removal of Methylene Blue and Rhodamine B, Ind. Eng. Chem.  
Res. 54 (2015) 49654975.  
38. K. Soleimani, A. D. D. Tehrani and M. Adeli, Bioconjugated  
graphene oxide hydrogel as an effective adsorbent for cationic dyes  
removal, Ecotoxicol. Environ. Saf. 147 (2018) 3442.  
3
6. Y. Tang, T. He, Y. Liu, B. Zhou, R. Yang and L. Zhu, Sorption  
behavior of methylene blue and rhodamine B mixed dyes onto  
chitosan graft poly (acrylic acid-co-2-acrylamide-2-methyl propane  
sulfonic acid) hydrogel, Adv. Polym. Technol. 37 (2018) 2568–  
2
578.  
94