Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 318-327  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/9(1)327  
Removal of Orange G Dye from Aqueous Solution  
by Adsorption: A Short Review  
1
*
1
2
Saifullahi Shehu Imam , Atika Ibrahim Muhammad , Halimah Funmilayo Babamale ,  
Zakariyya Uba Zango3  
1
Department of Pure and Industrial Chemistry, Bayero University, P.M.B 3011, Kano State, Nigeria  
2
Department of Industrial Chemistry, University of Ilorin, P.M.B 1515, Kwara State, Nigeria  
3
Department of Chemistry, Al-Qalam University, P.M.B 2137, Katsina State, Nigeria  
Received: 29/08/2020  
Accepted: 28/11/2020  
Published: 20/03/2021  
Abstract  
Adsorption is a widely used technique for wastewater remediation. The process is effective and economical for the removal of  
various pollutants from wastewater, including dyes. Moreover, Besides commercial activated carbon, different low-cost materials such  
as agricultural and industrial wastes are now used as adsorbents. The present review focused on the removal of a teratogenic and  
carcinogenic dye, orange G (OG) via adsorption using several adsorbents, together with the experimental conditions and their adsorption  
capacities. Based on the information compiled, various adsorbents have shown promising potential for OG removal.  
Keywords: Adsorption, Orange G dye, Adsorbents, Wastewater treatment  
1
1
.1 Toxicity of OG  
OG dye has been found to exert hazardous and inevitable  
1
Introduction  
Human and animal protection has been disrupted due to  
harmful effects on aquatic species and the entire water  
environment (4, 11). It has been reported as one of the highly  
poisonous anionic dye, which shows some chromosomal  
damage and clastogenic activity (12, 13). Its toxic,  
carcinogenic and teratogenic effects to the living organisms  
has been attributed to the azo group in its chemical structure  
water contamination as a result of numerous pollutants  
discharged from various industries (1). Among the most  
common contaminants found in the water, those from organic  
origins have been found to exert hazardous effects due to their  
accumulative and persistent nature in water. Dyes have been  
recognized as the most frequent organic pollutants found in the  
water due to their wide applications in various industries such  
as textile, cosmetics, leather and petrochemical (2). They are  
recognized as emerging contaminants due to their resistant  
nature of undergoing natural degradations. In fact, United  
States Environmental Protection Agency (USEPA) has listed  
organic dyes and pigments as hazardous substances (3). Orange  
G (OG) belongs to the class of azo dyes of synthetic origin. It  
is a form of mono azo and anionic dye, which is soluble in water  
and stable at any pH (4). It is usually present as a sodium salt  
in two tautomeric forms in aqueous solution, while organic  
solvents favour the azo form (5). It has been used for a long  
time in United States of America for various applications such  
as medication and as a colorant for cosmetics before it was  
subsequently abandoned (6). Currently, it is used in textile and  
printing industries for dyeing of materials (such as silk and  
wool), paper and leather productions etc. (7). Furthermore, OG  
is also used in histology in many staining formulations and is  
likewise essential to pathologists (8). The colour of OG is due  
14-16). Not only OG, but the intermediates formed during its  
degradation are also toxic too (17). OG is likewise harmful to  
plants, flora and fauna (18). Furthermore, for humans, exposure  
to OG may result in irritation of the gastrointestinal and  
respiratory tract (7). It has also shown genotoxic effects on  
experimental animals such as Swiss albino mice and anaerobic  
biomass in aqueous solution (8, 19).  
2 Environmental remediations of OG  
Owing to the various adverse effects of OG on humans,  
aquatic organisms as well as plants, researchers have embarked  
on exploring different wastewater remediation techniques for  
the removal of this toxic pollutant in the environmental waters.  
Various technologies such as coagulation (20), flocculation  
(21), bioremediations (22), photocatalytic degradations (23) as  
well as physical adsorptions (24) have been reported in  
wastewater treatment. The use of physical adsorption has been  
highly recognized as an effective wastewater remediation  
method due to its promising properties ranging from the  
availability of various adsorbent materials, cost-saving,  
simplicity of design, flexibility as well as the non-destructive  
environmental nature of the method. Moreover, adsorption has  
been identified by USEPA as one of the best control methods  
(25). As such, this short review is aimed at exploring various  
adsorbent materials used for the removal of OG.  
to the azo group, while the auxochromes (−푆푂 ,−푂퐻, etc.)  
3
enhances the affinity of the dye (9). The azo bonds are being  
adsorbed onto the surface of an adsorbent through a covalent  
bond, which makes it more resistant to harsh conditions (10).  
The physicochemical properties and molecular structure of OG  
are highlighted in Table 1.  
Corresponding author: Saifullahi Shehu Imam, Department of Pure and Industrial Chemistry, Bayero University, P.M.B 3011, Kano  
State, Nigeria. E-mail: ssimam.chm@buk.edu.ng  
318  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 318-327  
Table 1: Physicochemical properties and molecular structure of OG  
Orange G (OG)  
Na  
7-hydroxy-8-(phenylazo)-1,3-naphthalenedisulfonic acid disodium salt  
Acid Orange 10  
AO10  
Property  
Reference  
Chemical formula  
Chemical name  
Generic name  
Abbreviation  
C.I.  
CAS number  
Classification  
Colour  
16  
C H  
10  
N
2
2 7  
O S  
2
16230  
1936-15-8  
Azo dye  
Orange  
475 nm  
̶ 4.56  
λ
max  
Log P (octanol-water)  
pKa  
Molecular size (Å )  
Molecular weight (gmol )  
Henry’s law constant  
Atmospheric OH rate  
constant  
11.5  
3
13.08 × 7.53 × 4.98  
452.37  
-1  
3
5.86E-0.23 atm-m /mole  
3
1
.49E-0.12 cm /molecule-sec  
Dye content (%)  
Melting point  
Water solubility  
90  
141 °C  
5 g/100 mL (20 °C)  
Chemical structure  
strength, but diminished slightly with increase in temeperature  
and initial OG concentration. Maximum adsorption capacity  
was found to be 31.25 mg/g and the experimental data fitted  
well with the Freundlich adsorption isotherm and pseudo-  
second-order Kinetic model. Thermodynamic study revealed  
that the adsorption process is spontaneous and exothermic. In a  
different study, Kumar, Ahluwalia and Charaya (38) made use  
of powdered biomass of Chlorela vulgaris as adsorbent for the  
removal of OG dye from aqueous solution. Maximum  
performance was recorded using 50 mg/mL biomass dosage.  
Optimum pH, temperature and time were found to be 5, 10 ºC  
and 10 min. The experimental data fitted the Freundlich  
isotherm model (38). Tobacco leaves (TL) were also used by  
Mohammed and Al-Mammar (39) as adsorbents for the  
removal of OG from aqueous solution. The maximum removal  
of OG using TL was recorded at pH of 9 and 10, and adsorption  
reaches saturation in 140 min.  
3
Adsorbents used for OG removal  
3
.1 Biomass-based adsorbents  
The use of biomass as adsorbents for wastewater  
remediation has been widely explored. Biomass is renewable  
energy derived from plant and animal organic matter (33). They  
offered numerous advantages as an alternative to other  
adsorbents used due to their natural occurrence, relative  
abundance and existence in various forms, as well as the low-  
cost. Various studies have reported the use of several  
biosorbents for the biosorption of OG dye. For instance, Ari  
and Celik (34) investigated the biosorption potential of both  
pristine and hegzadecylethyldimethylammonium bromide  
(
HDEDMABr) modified Pyracantha coccinea (P. coccinea)  
towards the removal of OG dye from aqueous solution.  
Initially, pristine P. coccinea had a biosorption capacity of 4.55  
mg/g. However, its capacity increased to 90.16 mg/g after  
modification with HDEDMABr. Furthermore, Hsini, Essekri  
(
35) prepared a biocomposite (PANI@AS) by coating almond  
3
.2 Activated carbon-based adsorbents  
Several studies have reported the use of activated carbon  
shell (AS) using polyaniline (PANI) and used as adsorbent for  
the removal of OG dye from aqueous solution. The adsorption  
of OG dye using PANi@AS reaches equilibrium within 90  
min, and the process was spontaneous and endothermic.  
The use of modified rice husk char (RHC) using KOH  
(
AC) for the removal of OG dye from aqueous solution. In  
general, AC is the most widely used sorbent for both  
environmental and industrial applications (40). This is due to  
its large surface area and ability to adsorb a wide range of  
organic compounds (41). Furthermore, any carbonaceous  
material of plant or animal origin with high carbon  
concentration can be used for the production of AC (42). For  
instance, Arulkumar, Sathishkumar (43) studied the  
performance of AC prepared via chemical activation of  
Thespesia populnea pods using sulphuric acid for the removal  
of OG dye from aqueous solution. The maximum adsorption  
capacity was found to be 9.129 mg/g and the experimental data  
fitted well with the Freundlich isotherm and pseudo-second-  
(
KMRHC) as an adsorbent for the removal of OG dye has been  
reported by Malik, Khan (36). KMRHC could almost  
completely removed OG dye from aqueous solution, as the  
removal efficiency reached 96%, in a process that was  
spontaneous and exothermic. Also, acid modified wheat husk  
was used by Banerjee et al. (37) as an adsorbent for the removal  
of OG dye. Low pH was found to enhance the adsorption of  
OG dye onto acid-modified wheat husk and equilibrium was  
attained within 30 min. The percentage of dye removal was  
found to increase with adsorbent dosage, contact time and ionic  
319  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 318-327  
order reaction kinetics model. In the case of Laksaci, Khelifi  
combustion method using urea, oxalic acid and citric acid as  
fuels. Maximum removal was recorded at pH 4, and the MgO  
synthesized using oxalic acid as fuel had the highest adsorption  
capacity. The adsorption process was spontaneous and  
exothermic.  
(
44), raw coffee ground was used as a precursor to prepare AC  
for subsequent use as adsorbent for the removal of OG dye. The  
AC produced was found to be microporous with a specific  
2
surface area of 1455 m /g, and the adsorption process was  
spontaneous and endothermic. Furthermore, Goswami and  
Phukan (45) also prepared AC using matured tea leaf  
3.5 Layered double hydroxides-based adsorbents  
(
MTLAC). Subsequently, the surface of MTLAC was modified  
Layered double hydroxides (LDHs) are clay minerals  
containing layers of positively charged metal hydroxides and  
multivalent anions for neutrality (53). They have a unique  
structure, high chemical and thermal stability and could be  
synthesized easily (54). Furthermore, due to their low cost, high  
surface area, non-toxicity, highly tunable interior architecture  
and exchangeable anionic features, studies have reported the  
use of LDHs as adsorbents in wastewater remediation (55). For  
instance, Abdelkader, Bentouami (6) have reported the use of  
by incorporating sulfonic acid to form MTLAC-SA. This  
resulted in the decrease of pHpzc value from 5.18 in the case  
of MTLAC to 2.48 in the case of MTLAC-SA. Despite such  
modification, the adsorption capacity of MTLAC towards OG  
dye was still higher than that of MTLAC-SA. Apart from  
pristine AC, composites consisting of AC and other adsorbents  
have also been used for the removal of OG from aqueous  
solution. For instance, Saini, Garg (26) deposited ZnO on AC  
to form ZnO-AC nanoparticles for subsequent use as  
adsorbents for the removal of OG in bath mode. The  
nanoparticles were found to have a maximum adsorption  
capacity of 153.8 mg/g for OG, and the adsorption process was  
exothermic. Another composite was prepared by Jalali, Rahimi  
calcined and uncalcined Mg-Fe-CO  
removal of OG dye. The amount adsorbed using calcined Mg-  
Fe-CO was much higher than the amount adsorbed using  
uncalcined Mg-Fe-CO . Such effect was due to the difference  
in adsorption process which might have occurred via ion  
exchange mechanism in the case of uncalcined Mg-Fe-CO and  
via both surface and ion exchange phenomena in the case of  
calcined Mg-Fe-CO  
3
as adsorbent for the  
3
3
(
2 4  
46) via loading SnO /(NH )  
2
-SnCl  
6
-NCs onto AC and used for  
3
the removal of OG. The composite had a pHpzc of 6.0 and was  
able to remove up to 97.0% of OG.  
3
.
3
.3 Clay-based adsorbents  
Several clays have been used as adsorbents for the removal  
3.6 Polymer-based adsorbents  
Polymers are materials consisting of many repeating units  
and have also been used as adsorbents for the removal of  
various pollutants including OG dye. For instance, Zhang,  
Wang (56) employed the use of pristine and copper modified  
poly(m-phenylenediamine) (PmPD) as adsorbents for the  
removal of OG dye. Compared to pristine PmPD, the PmPD  
of various pollutants, including OG. For instance, Dawood (47)  
made use of bentonite as adsorbent for the removal of OG. The  
equilibrium time for the adsorption of OG using bentonite was  
found to be dependent on the adsorbate concentration. Still, the  
percentage removal of OG using bentonite increased with a  
decrease in temperature, an indication that the process was  
exothermic. Apart from pristine clay, studies have reported the  
use of modified clays as adsorbents for the removal of OG. For  
instance, Jović-Jovičić, Milutinović-Nikol (48) modified a  
local bentonite using hexadecyl trimethylammoniumbromide  
2+  
synthesized with Cu was found to have a high surface area.  
Such a high surface area resulted in increased performance by  
the modified PmPD during adsorption. The equilibrium time  
for the adsorption was 180 min, and the isotherm data fitted  
well with the Langmuir model, an indication of monolayer  
adsorption. The use of surfactants, octadecyl trimethyl  
ammonium chloride (OTAC), dioctadecyl dimethyl  
ammonium chloride (DDAC), dodecyl trimethyl ammonium  
chloride (DTAC) and benzyl hexadecyl dimethyl ammonium  
chloride (BHDAC) to enhance the adsorption capacity of  
chitosan towards OG dye has been reported by Zhang, Cheng  
(57). The adsorption efficiency for OG using the  
chitosan/surfactant followed the order: DTAC > DDAC >  
OTAC > BHDAC. The maximum removal of OG using  
chitosan/DTAC was recorded at pH 3.0, and the removal was  
found to decrease with an increase in pH from 3.0  10.0.  
However, equilibrium was achieved within 240 min, and the  
adsorption process was exothermic. In a different study,  
magnetic chitosan nanoparticles (MCN) were modified using  
ethylenediamine to form EMCN. The adsorption capacity of  
EMCN towards OG was higher than that of MCN due to the  
higher concentration of active sites in EMCN. Moreover, the  
EMCN could be separated easily using a magnet, and the  
adsorption process towards OG dye was spontaneous and  
exothermic. Another form of modification involves grafting  
chitosan onto monomers. For instance, grafted crosslinked  
chitosan using N-vinyl-2-pyrrolidone as a monomer. Although  
the adsorption capacity of grafted (cts(x)-g-PNVP) towards OG  
dye was higher than that of chitosan, however, the adsorption  
capacities of both adsorbents were high at low pH due to a  
decrease in the number of protonated amines on the adsorbents  
with an increase in pH. The low efficiency recorded using the  
ungrafted chitosan was due to its high swelling ability, which  
makes it very brittle. Furthermore, Konaganti, Kota (58) also  
synthesized chitosan-based copolymers by grafting chitosan  
(
HDTMA-bromide) to produce HDTMA-bentonite. Compared  
to Na-bentonite, the adsorption capacity of HDTMA-bentonite  
towards OG was higher. Such performance by HDTMA-  
bentonite resulted from the increased affinity of OG due to the  
increased hydrophobicity of the bentonite particles. In a  
different study, Salam, Kosa (49) modified montmorillonite  
nanoclay using octadecylamine. The octadecylamine modified  
montmorillonite nanoclay (ODA) had a BET specific surface  
area of 16.38 m /g. Adsorption study revealed that the ODA  
could remove OG within few minutes with an adsorption  
capacity of 39.4 mg/g.  
2
3
.4 Metal oxides  
Various oxides with metal ions have also been used as  
adsorbents for the removal of various pollutants, including OG.  
For instance, Mondal, Singh (50) made use of hematite (α-  
Fe O ) as adsorbent for the removal of OG. The adsorption of  
2 3  
OG using hematite was found to decrease with increase in pH,  
temperature and initial concentration. The adsorption process  
was spontaneous and exothermic. In a different study, Gusain,  
2
Dubey (51) made use of nano zirconia (ZrO ) as adsorbent for  
the removal of OG. Higher percentage removal was recorded  
at pH 2, and the adsorption process was exothermic. Nassar,  
Mohamed (16) reported the use of α-Fe O , CoFe O and  
2 3 2 4  
Co as adsorbents for the removal of OG. Due to electrostatic  
attraction at low pH, maximum adsorption using α-Fe  
CoFe and Co was recorded at pH 3, 2 and 2. The  
adsorption process was endothermic and spontaneous.  
Magnesium oxide (MgO) nanostructures have been  
synthesized by Nassar, Mohamed (52) via hybrid sol-gel  
3 4  
O
O ,  
2 3  
O
2 4  
3 4  
O
320  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 318-327  
onto a series of poly(alkyl methacrylate)s to produce  
ChgPMMA (chitosan grafted poly(methyl methacrylate)),  
ChgPEMA (chitosan grafted poly(ethyl methacrylate)),  
ChgPBMA (chitosan grafted poly(butyl methacrylate)),  
ChgPHMA (chitosan grafted polyhexyl methacrylate)). Both  
ungrafted chitosan and the grafted copolymers were  
subsequently used as adsorbents for the removal of OG dye.  
The grafted polymers were found to exhibit higher adsorption  
capacity compared to that of ungrafted chitosan, and adsorption  
capacity follows the order ChgPMMA > ChgPEMA >  
ChgPBMA > ChgPHMA > ungrafted chitosan. Wu, Wang (59)  
also synthesized chitosan/diatomite (CS/DM) membranes by  
phase inversion technique. The diatomite was introduced to  
improve the mechanical and adsorption properties of CS. The  
adsorption capacity of the CS/DM membrane was found to be  
dependent on initial OG concentration, pH value, adsorbent  
dosage and contact time. The efficiency for the removal of OG  
using CS/DM membrane reached 94.0%.  
Dulman, Cucu-Man (7) made use of crosslinked acrylic  
copolymer functionalized with triethylenetetramine as  
adsorbent for the removal of OG. The electrostatic attraction  
between the dye anions and the protonated amine groups of the  
adsorbent plays a vital role for the system, and the adsorption  
process was spontaneous and endothermic. In a different study,  
Sandić, Nastasović (60) made use of macroporous  
poly(glycidyl methacrylate-coethylene glycol dimethacrylate)  
(18) modified sawdust using perchloric acid for use as  
adsorbent for the removal of OG dye. The adsorption reaches  
equilibrium in 90 min, and the removal percentage decreases  
from 78.3 to 36.3% with increase in temperature from 30 to 50  
°C, an indication that the process is exothermic. Arzani,  
Ashtiani (14) synthesized a carbon mesoporous material  
(CMK-3) using SBA-15 silica mesoporous as hard template.  
The CMK-3 was considered as a potential candidate for the  
removal of OG dye due to its well-ordered mesoporous  
structure, high surface area, large pore volume and narrow pore  
size distribution. The CMK-3 was found to have a surface area  
2
of 918 m /g and average pore diameter of 3.64 nm. Due to the  
protonation of CMK-3 at lower solution pH, its adsorption  
capacity towards OG was much higher at low pH. The use of  
magnetic biochar derived from the empty fruit bunch (EFB) as  
adsorbent for the removal of OG dye has been reported by  
Mubarak, Fo (63). The material was reported to possess an  
excellent adsorption capacity for the removal of OG dye, and  
optimized performance was recorded at pH 2 and contact time  
of 120 min. Mesoporous molecular sieves (SBA-3) have also  
been used by Anbia, Hariri (64) for the removal of OG. In their  
study, SBA-3 was calcined at 550 °C to remove the surfactant  
template and produce C-SBA-3. However, it was observed that  
the adsorption capability of SBA-3 towards OG dye was higher  
than that of C-SBA-3. Such effect was attributed to the polar  
groups present on the surface of SBA-3 created by the  
surfactant template, which imparted significant adsorption  
capacity towards anions to SBA-3.  
The use of monoamine modified magnetic silica  
(MAMMS) and monoamine modified magnetite-free silica  
(MAMPS) as adsorbents for the removal of OG dye from  
aqueous solution has been reported by Atia, Donia (65). The  
maximum performance using both silica samples was recorded  
at pH 3. However, MAMMS showed higher adsorption  
capacity towards OG compared to MAMPS. Such performance  
by MAMMS was attributed to the thin film of silica that was  
formed on the magnetite particles, which increased the number  
of exposed active sites available for interaction with OG. In a  
different study, Zheng, Zheng (66) made use of quaternary  
ammonium group-rich magnetic nanoparticles (MNPs),  
Fe3O4@SiO2-MPS-g-DAC (FSMD) synthesized via graft  
polymerization, as adsorbent for the removal of OG. FMSD had  
a shorter adsorption equilibrium time (20 min) and the main  
adsorption mechanism was electrostatic interaction. The  
adsorption capacity of FSMD MNPs remained high at pH 2.0  
to 7.0, an indication that FMSD MNPs had good affinity to OG  
at a wide pH range. The adsorption process was spontaneous  
and endothermic. A study aimed at investigating the adsorption  
potential of anion exchangers with different functional groups  
(Amberlite IRA-900, Amberlite IRA-910, Amberlyst A-21)  
towards removing OG dye has been conducted by Greluk and  
Hubicki (67). The adsorption capacities of the anion  
exchangers towards OG was related to their basicity, as  
strongly basic anion exchanger of type 1 (Amberlite IRA-900)  
> strongly basic anion exchanger of type 2 (Amberlite IRA-  
910) > weakly basic anion exchanger (Amberlyst A-21). The  
kinetic measurement showed that the adsorption process was  
uniform and rapid.  
(
PGME) functionalized with diethylene triamine (PGME-deta)  
for the adsorption of OG. Adsorption of OG using PGME-deta  
reached 96% at pH 2 but decreased to 5% at pH 11. The dye  
sorption was due to the electrostatic attraction between  
positively charged amine groups on the PGME-deta surface  
and the negatively charged sulfonate groups on OG. Also,  
coordination supramolecular polymer [퐶푢(푏푖푝푦)(푆푂 )] , has  
4
been used as adsorbent by Xiao, Xiong (61) for the removal of  
a high concentration of OG. The adsorption of OG using  
[
퐶푢(푏푖푝푦)(푆푂 )] occurred via ion exchange, and the material  
4 푛  
displayed high adsorption capacity for the removal of OG.  
3
.7 Other materials  
Several other materials have also been used as adsorbents  
for the removal of OG dye. For instance, Bhatnagar, Minocha  
29) made use of paper mill sludge (a waste material generated  
(
from paper industries) as adsorbent for the removal of OG dye.  
Maximum percentage removal (75 80%) was recorded at pHs  
2
4, and the efficiency decreases as the pH increases. Such an  
effect was attributed to the electrostatic attraction at low pH and  
electrostatic repulsion at high pH. Another waste material from  
the sugar industry, bagasse fly ash (BFA) has been used by  
Mall, Srivastava (62) as adsorbent for the removal of OG dye  
from aqueous solution. BFA was found to have a high surface  
area, pore size and pore volume. The removal of OG using BFA  
was maximum at acidic pH (pH 3  4), and the kinetic study  
revealed that the adsorption of OG onto BFA is a gradual  
process.  
Singh, Banerjee (27) reported the use of raw and modified  
(
using sulphuric acid and sodium bicarbonate) sawdust as  
adsorbents for the removal of OG dye from aqueous solution.  
However, both adsorbents had an appreciable adsorption  
capacity towards OG dye, in a process that was spontaneous  
and exothermic. In a different study, Banerjee, Chattopadhyaya  
Table 2: List of adsorbents used for adsorption studies of OG  
Capability  
mg/g)  
Isotherm  
model  
Kinetic  
model  
Adsorbent  
Experimental conditions  
Ref.  
(
Dosage: 0.1 g, volume: 50 mL,  
concentration: 10 mg/L, shaking  
speed: 150 rpm, temperature: 30 °C  
Bagasse fly ash (BFA)  
13.79  
F
PSO  
321  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 318-327  
Capability  
mg/g)  
Isotherm  
model  
Kinetic  
model  
Adsorbent  
Experimental conditions  
Ref.  
(
Dosage: 0.10 g, volume: 10 mL,  
temperature: 25 °C, concentration:  
Paper mill sludge  
Tobacco leaves (TL)  
62.3  
L
PSO  
PSO  
-4  
.5 × 10 M  
5
Dosage: 0.25 g, volume: 25 mL,  
pH: 10, shaking speed: 110 rpm  
Dosage: 0.1 g, volume 100 cm ,  
41.66  
F
L
3
Monoamine modified magnetic  
silica (MAMMS)  
temperature: 298 K, concentration:  
6
4
1.33  
8.98  
PSO  
PSO  
-3  
48 mg dm , shaking speed: 400  
rpm  
3
Dosage: 0.1 g, volume 100 cm ,  
Monoamine modified magnetite-  
free silica (MAMPS)  
temperature: 298 K, concentration:  
L
-3  
48 mg dm , shaking speed: 400  
rpm  
Dosage: 150 mg, volume: 50 mL,  
concentration: 300 ppm, pH: 7  
Dosage: 150 mg, volume: 50 mL,  
concentration: 300 ppm, pH: 7  
Dosage: 150 mg, volume: 50 mL,  
concentration: 300 ppm, pH: 7  
Dosage: 150 mg, volume: 50 mL,  
concentration: 300 ppm, pH: 7  
Dosage: 150 mg, volume: 50 mL,  
concentration: 300 ppm, pH: 7  
Dosage: 50 mg, volume: 250 mL,  
pH: 7, temperature: 24 °C, initial  
concentration: 30 mg/L  
Ungrafted chitosan  
34  
L
L
L
L
L
PSO  
PSO  
PSO  
PSO  
PSO  
Chitosan grafted poly(methyl  
methacrylate)  
Chitosan grafted poly(ethyl  
methacrylate)  
Chitosan grafted poly(butyl  
methacrylate)  
Chitosan grafted poly(hexyl  
methacrylate)  
8
8
8
8
7.2  
6.7  
4
0.6  
Mesoporous molecular sieves  
135.1  
0.84  
F
-
PSO  
PSO  
PSO  
-
(
SBA-3)  
Dosage: 0.01 g, volume: 0.050  
dm3, conc: 50 mg dm-3,  
temperature: 25 °C  
Na-bentonite  
Hexadecyl  
trimethylammoniumbromide  
Dosage: 0.01 g, volume: 0.050  
3
-3  
dm , conc: 50 mg dm ,  
temperature: 25 °C  
101.42  
0.63  
-
(
HDTMA-bromide)  
Dosage: 1 g, volume: 50 mL,  
concentration: 25 mg/L,  
temperature: 303 K  
Hematite (α-Fe  
2 3  
O )  
F
Macroporous poly(glycidyl  
methacrylate-coethylene glycol  
dimethacrylate) (PGME)  
functionalized with diethylene  
triamine (PGME-deta)  
Dosage: 25 mg, volume: 50 cm3,  
temperature: 25 °C  
123.9  
9.129  
L
F
PSO  
PSO  
Dosage: 0.2 g/25 mL, agitation:  
200 rpm, contact time: 300 min,  
dye concentration: 10 mg/L.  
Dosage: 1 g/L, concentration: 200  
mg/L.  
Thespesia populnea pods  
Uncalcined Mg-Fe-CO  
3
76.4  
L
L
PSO  
PSO  
Dosage: 1 g/L, concentration: 200  
mg/L.  
Calcined Mg-Fe-CO  
3
378.8  
Ethylenediamine-modified  
magnetic chitosan particles  
Dosage: 1 g/L, concentration: 5 ×  
10 mmol/L, shaking rate: 200  
rpm, temperature: 298 K.  
Dosage: 1 g/L, volume: 50 mL, pH:  
2, concentration: 2.5 mg/L,  
temperature: 308 K  
Dosage: 1 g/L, volume: 50 mL, pH:  
2, concentration: 2.5 mg/L,  
temperature: 308 K  
-3  
1017  
0.24  
0.40  
L
F
F
-
-
-
(
EMCN)  
Raw saw dust  
Modified saw dust  
Dosage: 25 mg, concentration: 240  
mg/L, volume: 50 mL, reaction  
temperature: 30 °C, reaction time:  
poly(m-phenylenediamine)  
163.9  
387.6  
L
L
PSO  
PSO  
180 min.  
Dosage: 25 mg, concentration: 240  
mg/L, volume: 50 mL, reaction  
temperature: 30 °C, reaction time:  
2+  
Cu - poly(m-phenylenediamine)  
180 min.  
322  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 318-327  
Capability  
mg/g)  
Isotherm  
model  
Kinetic  
model  
Adsorbent  
Experimental conditions  
Ref.  
(
Carbon mesoporous material  
Dosage: 50 mg, concentration:  
1000 mg/L, volume: 25 mL  
Dosage: 0.2 g, volume 20 mL,  
189  
L
PSO  
(
CMK-3)  
Amberlite IRA-900  
Amberlite IRA-910  
Amberlyst A-21  
temperature: 298 K, shaking speed: 1012.62  
80 rpm  
Dosage: 0.2 g, volume 20 mL,  
L
L
PSO  
1
temperature: 298 K, shaking speed: 923.48  
PSO  
180 rpm  
Dosage: 0.2 g, volume 20 mL,  
temperature: 298 K, shaking speed: 139.12  
L
L
L
PSO  
PSO  
PSO  
180 rpm  
Magnetic graphene oxide  
nanocomposite  
Pyracantha coccinea modified with  
hegzadecylethyldimethylammonium  
bromide (HDEDMABr)  
Dosage: 1 g/L, pH: 6, temperature:  
25 °C, concentration: 60 mg/L  
20.85  
Dosage: 2.4 g/L, volume: 25 mL,  
pH: 4 concentration: 100 mg/L  
90.16  
Dosage: 20 mg, volume: 100 mL,  
concentration: 400 mg/L, pH: 3,  
temperature: 293.15 K, shaking  
speed: 200 rpm  
Dosage: 20 mg, volume: 100 mL,  
concentration: 400 mg/L, pH: 3,  
temperature: 293.15 K, shaking  
speed: 200 rpm  
Dosage: 20 mg, volume: 100 mL,  
concentration: 400 mg/L, pH: 3,  
temperature: 293.15 K, shaking  
speed: 200 rpm  
Dosage: 20 mg, volume: 100 mL,  
concentration: 400 mg/L, pH: 3,  
temperature: 293.15 K, shaking  
speed: 200 rpm  
Activated carbon  
Bentonite  
555.34  
-
-
210.06  
128.61  
344.76  
1270.71  
1452.07  
-
-
Activated clay  
Spirulina powder  
Chitosan  
-
-
-
-
Dosage: 20 mg, volume: 100 mL,  
concentration: 400 mg/L, pH: 3,  
temperature: 293.15 K, shaking  
speed: 200 rpm  
Dosage: 20 mg, volume: 100 mL,  
DTAC: 34.10 µM, concentration:  
-
-
Chitosan/DTAC  
L
PSO  
4
2
00 mg/L, pH: 3, temperature:  
93.15 K, shaking speed: 200 rpm  
Dosage: 2 g/L, pH: 2,  
concentration: 15 mg/L  
Dosage: 20 mg/40 mL,  
concentration: 500 mg/L  
Dosage: 1.00 g, pH: 2, agitation  
speed: 125 rpm, contact time: 120  
min  
Cerium dioxide nanoparticles  
33.33  
1333  
L
L
-
[
퐶푢(푏푖푝푦)(푆푂 )]  
PSO  
4
Magnetic biochar  
32.36  
L
PSO  
Dosage: 20 g/L, volume: 50 mL,  
pH: 2, concentration: 50 mg/L,  
shaking speed: 100 rpm  
Dosage: 5 g/L, volume: 100 mL,  
pH: 2, agitation speed: 200 rpm  
Sawdust modified with perchloric  
acid  
5.48  
L
PFO  
PSO  
PSO  
PSO  
PSO  
Modified wheat husk  
31.25  
1218  
F
Crosslinked acrylic copolymer  
functionalized with  
triethylenetetramine  
Chitosan/diatomite (CS/DM)  
membrane  
Dosage: 0.25 g, volume: 100 mL,  
pH: 2, temperature: 323 K.  
NLL  
RP  
L
Dosage: 8 mg, concentration: 200  
mg/L, pH: 3  
Dosage: 30 mg/50 mL, pH: 3,  
concentration: 50 mg/L,  
588  
Fe  
3 4  
O /MIL-101(Cr)  
200  
-
temperature: 298 K.  
Dosage: 2 g/L, concentration: 50  
ppm, volume: 50 mL, steering  
speed: 90 rpm, temperature: 30 °C  
Nano zirconia (ZrO  
2
)
-
-
323  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 318-327  
Capability  
mg/g)  
Isotherm  
model  
Kinetic  
model  
Adsorbent  
Experimental conditions  
Ref.  
(
Dosage: 0.02 g/50 mL, pH: 2,  
concentration: 50 mg/L,  
ZnO-AC  
153.8  
L
PSO  
temperature: 343 K.  
Dosage: 0.05 g, volume: 50 mL,  
concentration: 50 mg/L, pH: 3,  
steering speed: 400 rpm,  
α-Fe  
2
O
3
62.0  
L
L
L
PSO  
temperature: 25 °C  
Dosage: 0.05 g, volume: 50 mL,  
concentration: 50 mg/L, pH: 2,  
steering speed: 400 rpm,  
CoFe  
2
O
4
52.3  
33.3  
PSO  
PSO  
temperature: 25 °C  
Dosage: 0.05 g, volume: 50 mL,  
concentration: 50 mg/L, pH: 2,  
steering speed: 400 rpm,  
3 4  
Co O  
temperature: 25 °C  
Matured tea leaf activated carbon  
MTLAC)  
Sulfonic acid functionalized  
MTLAC (MTLAC-SA)  
Dosage: 1 g/L, concentration: 200  
mg/L, temperature: 303 K.  
Dosage: 1 g/L, concentration: 200  
mg/L, temperature: 303 K  
Dosage: 20 mg, volume: 20 mL,  
pH: 8, concentration: 50 mg/L,  
temperature: 296 K  
3
1
18.5  
05.7  
L
L
PSO  
PSO  
(
Octadecylamine modified  
montmorillonite nanoclay (ODA)  
39.4  
19.3  
11.8  
21.5  
18.1  
-
PSO  
PSO  
PSO  
PSO  
PSO  
Magnesium oxide (MgO)  
synthesized using urea as fuel and  
calcined at 550 °C  
Magnesium oxide (MgO)  
synthesized using urea as fuel and  
calcined at 800 °C  
Magnesium oxide (MgO)  
synthesized using oxalic acid as fuel  
and calcined at 550 °C  
Magnesium oxide (MgO)  
synthesized using oxalic acid as fuel  
and calcined at 800 °C  
Dosage: 0.05 mg, volume: 25 mL,  
pH: 4, temperature: 25 °C  
L
L
L
L
Dosage: 0.05 mg, volume: 25 mL,  
pH: 4, temperature: 25 °C  
Dosage: 0.05 mg, volume: 25 mL,  
pH: 4, temperature: 25 °C  
Dosage: 0.05 mg, volume: 25 mL,  
pH: 4, temperature: 25 °C  
Magnesium oxide (MgO)  
synthesized using citric acid as fuel  
and calcined at 800 °C  
Dosage: 0.05 mg, volume: 25 mL,  
pH: 4, temperature: 25 °C  
16.5  
L
L
PSO  
PSO  
Dosage: 0.015 g, volume: 50 mL,  
pH: 6, concentration: 10 mg/L  
Dosage: 2 g/L, pH: 4,  
2 4  
SnO /(NH )  
2
-SnCl  
6
-NCs-AC  
83.34  
Rice husk char (RHC) modified  
using KOH (KMRHC)  
concentration: 80 mg/L,  
temperature: 303 K, agitation  
speed: 250 rpm  
38.8  
L
PSO  
Dosage: 1 g/L, pH: 2.5,  
concentration: 50 mg/L,  
temperature: 303 K  
Dosage: 50 mg, volume: 50 mL,  
concentration: 25 mg/L,  
temperature: 318 K  
γ-alumina  
50.1  
100  
L
L
PSO  
PSO  
Activated carbon prepared using  
raw coffee ground  
Dosage: 0.1 g, concentration: 50  
mg/L, pH 5  
Dosage: 0.1 g, concentration: 50  
mg/L, pH 3  
Ungrafted chitosan  
1.7  
L
L
PSO  
PSO  
Grafted chitosan (cts(x)-g-PNVP)  
63.7  
Dosage: 10 mg, volume: 10 mL,  
concentration: 200 mg/L, pH: 3,  
shaking speed: 200 rpm,  
temperature: 318 K  
Quaternary ammonium group-rich  
magnetic nanoparticles (MNPs),  
Fe O @SiO -MPS-g-DAC (FSMD)  
3 4 2  
109.1  
L
PSO  
Dosage: 2 mg, volume: 10 mL,  
temperature: 298 K, pH: 3  
Dosage: 0.5 g/L, concentration: 50  
mg/L, pH: 5  
Crossed-linked porous polyimide  
Polyaniline coated almond shell  
833.33  
L
F
PSO  
PSO  
190.98  
(
PANI@AS)  
Key: L = Langmuir, F = Freundlich, T = Temkin, RP = Redlich-Peterson, NLL = Non-linear Langmuir, PFO = Pseudo first order, PSO = Pseudo second  
order  
324  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 318-327  
2
3
.
.
Garba ZN, Zango ZU, Babando A, Galadima A. Competitive  
adsorption of dyes onto granular activated carbon. J Chem Pharm  
Res. 2015;7:710-7.  
Ghosh JP, Achari G, Langford CH. Design and evaluation of a UV  
LED photocatalytic reactor using anodized TiO2 nanotubes. Water  
Environment Research. 2016;88(8):785-91.  
4
Limitations  
The use of physical adsorption has been highly recognized  
as an effective wastewater remediation method due to its  
promising properties. Notwithstanding, certain issues still need  
to be addressed. For instance, adsorbent capacity progressively  
deteriorates as the number of cycles increases, and the spent  
adsorbent may be considered as hazardous waste. Furthermore,  
the risk of explosion between contaminants and adsorbents also  
exists (75).  
4. Gan G, Liu J, Zhu Z, Yang Z, Zhang C, Hou X. A novel magnetic  
nanoscaled Fe3O4/CeO2 composite prepared by oxidation-  
precipitation process and its application for degradation of orange  
G in aqueous solution as Fenton-like heterogeneous catalyst.  
Chemosphere. 2017;168:254-63.  
5
.
Kyriakopoulos J, Kordouli E, Bourikas K, Kordulis C,  
Lycourghiotis A. Decolorization of Orange-G aqueous solutions  
5
Conclusions and future perspectives  
The present study showed various adsorbents that have  
over  
C60/MCM-41  
photocatalysts.  
Applied  
Sciences.  
been used by numerous researchers in the treatment of  
wastewater contaminated by OG dye. Based on the literature  
survey, it is clear that adsorption of OG dye can be achieved  
using different materials such as activated carbons, biomass,  
layered double hydroxides, polymers, clays, metal oxides and  
many others. Although pristine adsorbents were found to  
effective, however, various researchers have modified pristine  
adsorbents using different approaches for better removal  
efficiency. Most studies have reported high removal efficiency  
at low pH values and low removal efficiency at high pH values.  
The OG dye removal process in most cases was found to follow  
the Langmuir isotherm. Moreover, the kinetics data for the  
adsorption of OG dye onto various adsorbents, usually follows  
the pseudo-second-order kinetics model, and the adsorption  
capacity ranged from 0.24  1452.07 mg/g. Finally, based on  
the information compiled, adsorption is an effective technique  
for the removal of OG dye from aqueous solutions, and various  
low-cost and abundantly available materials including biomass,  
clays and industrial wastes have shown good capability for the  
removal of OG dye. Notwithstanding, to promote the industrial  
application of adsorption technique, future researches are  
encouraged to focus on the use of immobilized adsorbents due  
to their convenient recovery. Also, mixed pollutant effluents  
should be used in assessing the capacity of adsorbents. In  
addition, most researches are usually conducted in a laboratory-  
scale using synthetic wastewater. Thus, much attention should  
be given to treating real wastewater samples via adsorption  
techniques. Moreover, it is essential to assess the ecotoxicity of  
various adsorbents before their widespread application.  
2019;9(9):1958.  
6
.
Abdelkader NB-H, Bentouami A, Derriche Z, Bettahar N, De  
Menorval L-C. Synthesis and characterization of MgFe layer  
double hydroxides and its application on adsorption of Orange G  
from aqueous solution. Chemical Engineering Journal.  
2
011;169(1-3):231-8.  
7
8
.
.
Dulman V, Cucu-Man S-M, Bunia I, Dumitras M. Batch and fixed  
bed column studies on removal of Orange G acid dye by a weak  
base functionalized polymer. Desalination and Water Treatment.  
2016;57(31):14708-27.  
Dulman V, Cucu-Man SM, Olariu RI, Buhaceanu R, Dumitraş M,  
Bunia I. A new heterogeneous catalytic system for decolorization  
and mineralization of Orange G acid dye based on hydrogen  
peroxide and  
a macroporous chelating polymer. Dyes and  
Pigments. 2012;95(1):79-88.  
Wang Y, Priambodo R, Zhang H, Huang Y-H. Degradation of the  
azo dye Orange G in a fluidized bed reactor using iron oxide as a  
9
1
1
.
heterogeneous photo-Fenton catalyst. RSC  
2015;5(56):45276-83.  
Advances.  
0. Singh J, Uma SB, Sharma YC. A Very Fast Removal of Orange G  
from its Aqueous Solutions by Adsorption on Activated Saw Dust:  
Kinetic Modeling and Effect of Various Parameters. Rem.  
2
012;5(10):15.  
1. Pereira GF, El-Ghenymy A, Thiam A, Carlesi C, Eguiluz KI,  
Salazar-Banda GR, et al. Effective removal of Orange-G azo dye  
from water by electro-Fenton and photoelectro-Fenton processes  
using a boron-doped diamond anode. Separation and Purification  
Technology. 2016;160:145-51.  
2. Li Y, Yang Z, Zhang H, Tong X, Feng J. Fabrication of sewage  
sludge-derived magnetic nanocomposites as heterogeneous  
catalyst for persulfate activation of Orange G degradation.  
Colloids and Surfaces A: Physicochemical and Engineering  
Aspects. 2017;529:856-63.  
1
1
3. Tarkwa J-B, Oturan N, Acayanka E, Laminsi S, Oturan MA.  
Photo-Fenton oxidation of Orange G azo dye: process optimization  
and mineralization mechanism. Environmental Chemistry Letters.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
2
019;17(1):473-9.  
1
1
4. Arzani K, Ashtiani BG, Kashi AHA. Equilibrium and kinetic  
adsorption study of the removal of Orange-G dye using carbon  
(
avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements  
that submitted work is original and has not been published  
elsewhere in any language.  
mesoporous material. 无机材料. 2012;27(6).  
5. Nassar MY, Ali AA, Amin AS. A facile Pechini solgel synthesis  
of TiO2/Zn2TiO2/ZnO/C nanocomposite: an efficient catalyst for  
the photocatalytic degradation of Orange G textile dye. RSC  
Advances. 2017;7(48):30411-21.  
Competing interests  
16. Nassar MY, Mohamed TY, Ahmed IS, Mohamed NM, Khatab M.  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
Hydrothermally synthesized Co 3 O 4, α-Fe 2 O 3, and CoFe 2 O  
4
nanostructures: efficient nano-adsorbents for the removal of  
Orange G textile dye from aqueous media. Journal of Inorganic  
and Organometallic Polymers and Materials. 2017;27(5):1526-37.  
7. Jeon P, Park S-M, Baek K. Controlled release of iron for activation  
of persulfate to oxidize orange G using iron anode. Korean Journal  
of Chemical Engineering. 2017;34(5):1305-9.  
8. Banerjee S, Chattopadhyaya MC, Chandra Sharma Y. Removal of  
an azo dye (Orange G) from aqueous solution using modified  
sawdust. Journal of Water, Sanitation and Hygiene for  
Development. 2015;5(2):235-43.  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
1
1
References  
1
.
Imam SS, Adnan R, Kaus NHM. Immobilization of BiOBr into  
cellulose acetate matrix as hybrid film photocatalyst for facile and  
multicycle degradation of ciprofloxacin. Journal of Alloys and  
Compounds. 2020:155990.  
1
2
9. Muthukumar M, Karuppiah MT, Raju GB. Electrochemical  
removal of CI Acid orange 10 from aqueous solutions. Separation  
and purification technology. 2007;55(2):198-205.  
0. Birjandi N, Younesi H, Bahramifar N. Treatment of wastewater  
effluents from paper-recycling plants by coagulation process and  
325  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 318-327  
optimization of treatment conditions with response surface  
methodology. Applied Water Science. 2016;6(4):339-48.  
1. Wang Z, Huang W, Yang G, Liu Y, Liu S. Preparation of cellulose-  
base amphoteric flocculant and its application in the treatment of  
wastewater. Carbohydrate polymers. 2019;215:179-88.  
2. Znad H, Al Ketife AM, Judd S, AlMomani F, Vuthaluru HB.  
Bioremediation and nutrient removal from wastewater by  
Chlorella vulgaris. Ecological Engineering. 2018;110:1-7.  
3. Yusoff MAM, Imam SS, Shah I, Adnan R. Photocatalytic activity  
of bismuth oxyiodide nanospheres and nanoplates in the  
degradation of ciprofloxacin under visible light. Materials  
Research Express. 2019;6(8):0850g5.  
43. Arulkumar M, Sathishkumar P, Palvannan T. Optimization of  
Orange G dye adsorption by activated carbon of Thespesia  
populnea pods using response surface methodology. Journal of  
hazardous materials. 2011;186(1):827-34.  
2
44. Laksaci H, Khelifi A, Belhamdi B, Trari M. The use of prepared  
activated carbon as adsorbent for the removal of orange G from  
aqueous solution. Microchemical Journal. 2019;145:908-13.  
45. Goswami M, Phukan P. Enhanced adsorption of cationic dyes  
using sulfonic acid modified activated carbon. Journal of  
Environmental Chemical Engineering. 2017;5(4):3508-17.  
46. Jalali S, Rahimi MR, Ghaedi M, Asfaram A, Goudarzi A.  
Synthesis and characterization of SnO2/(NH4) 2‐SnCl6  
nanocomposites loaded on activated carbon and its application for  
adsorption of methylene Blue and Orange G. Applied  
Organometallic Chemistry. 2018;32(1):e3903.  
2
2
2
2
2
4. Imam SS, Panneerselvam P. Enhanced rhodamine B dye  
adsorption by groundnut shell activated carbon coated with Fe3O4.  
Elixir Applied Chemistry. 2015;86:34984-9.  
5. Şentürk İ, Alzein M. Adsorptive removal of basic blue 41 using  
pistachio shell adsorbent-Performance in batch and column  
system. Sustainable Chemistry and Pharmacy. 2020;16:100254.  
6. Saini J, Garg V, Gupta R, Kataria N. Removal of Orange G and  
Rhodamine B dyes from aqueous system using hydrothermally  
synthesized zinc oxide loaded activated carbon (ZnO-AC). Journal  
of environmental chemical engineering. 2017;5(1):884-92.  
7. Singh J, Banerjee S, Gusain D, Sharma YC. EQUILIBRIUM  
MODELLING AND THERMODYNAMICS OF REMOVAL OF  
ORANGE G FROM ITS AQUEOUS SOLUTIONS. Journal of  
Applied Sciences in Environmental Sanitation. 2011;6(3).  
47. Dawood GS. Removal Orange (G) Dye from aqueous solution by  
adsorption on Bentonite. Tikrit Journal of Pure Science.  
2010;15(1):231-5.  
48. Jović-Jovič N, Milutinović-Nikol A, Banković P, Mojović Z,  
Žunić M, Gržetić I, et al. Organo-inorganic bentonite for  
simultaneous adsorption of Acid Orange 10 and lead ions. Applied  
Clay Science. 2010;47(3-4):452-6.  
49. Salam MA, Kosa SA, Al-Beladi AA. Application of nanoclay for  
the adsorptive removal of Orange G dye from aqueous solution.  
Journal of molecular liquids. 2017;241:469-77.  
50. Mondal MK, Singh S, Umareddy M, Dasgupta B. Removal of  
Orange G from aqueous solution by hematite: Isotherm and mass  
transfer studies. Korean Journal of Chemical Engineering.  
2010;27(6):1811-5.  
51. Gusain D, Dubey S, Upadhyay SN, Weng CH, Sharma YC.  
Studies on optimization of removal of orange G from aqueous  
solutions by a novel nano adsorbent, nano zirconia. Journal of  
Industrial and Engineering Chemistry. 2016;33:42-50.  
52. Nassar MY, Mohamed TY, Ahmed IS, Samir I. MgO  
nanostructure via a sol-gel combustion synthesis method using  
different fuels: an efficient nano-adsorbent for the removal of some  
anionic textile dyes. J Mol Liq. 2017;225:730-40.  
53. Daud M, Kamal MS, Shehzad F, Al-Harthi MA. Graphene/layered  
double hydroxides nanocomposites: a review of recent progress in  
synthesis and applications. Carbon. 2016;104:241-52.  
54. Mishra G, Dash B, Pandey S. Layered double hydroxides: A brief  
review from fundamentals to application as evolving biomaterials.  
Applied Clay Science. 2018;153:172-86.  
2
2
2
3
3
3
8. Cheung W, Szeto Y, McKay G. Intraparticle diffusion processes  
during acid dye adsorption onto chitosan. Bioresource technology.  
2
007;98(15):2897-904.  
9. Bhatnagar A, Minocha A, Jeon B, Park J-M, Lee G. Adsorption of  
orange G dye on paper mill sludge: equilibrium and kinetic  
modeling. Fresenius Environmental Bulletin. 2007;16(9):1049-55.  
0. Meetani M, Rauf M, Hisaindee S, Khaleel A, AlZamly A, Ahmad  
A. Mechanistic studies of photoinduced degradation of Orange G  
using LC/MS. Rsc Advances. 2011;1(3):490-7.  
1. Vinu R, Akki SU, Madras G. Investigation of dye functional group  
on the photocatalytic degradation of dyes by nano-TiO2. Journal  
of Hazardous Materials. 2010;176(1-3):765-73.  
2. Hamous H, Khenifi A, Bouberka Z, Derriche Z, Hamous H,  
Khenifi A, et al. Electrochemical degradation of Orange G in K 2  
SO 4 and KCl medium. Environmental Engineering Research.  
2
019;25(4):571-8.  
3
3
3. Kamimoto M. The Significance of Liquid Fuel Production from  
Woody Biomass. AIST TODAY. 2006.  
55. Zubair M, Daud M, McKay G, Shehzad F, Al-Harthi MA. Recent  
progress in layered double hydroxides (LDH)-containing hybrids  
as adsorbents for water remediation. Applied Clay Science.  
2017;143:279-92.  
56. Zhang L, Wang H, Yu W, Su Z, Chai L, Li J, et al. Facile and large-  
scale synthesis of functional poly (m-phenylenediamine)  
nanoparticles by Cu 2+-assisted method with superior ability for  
4. Ari AG, Celik S. Biosorption potential of Orange G dye by  
modified Pyracantha coccinea: Batch and dynamic flow system  
applications. Chemical engineering journal. 2013;226:263-70.  
5. Hsini A, Essekri A, Aarab N, Laabd M, Addi AA, Lakhmiri R, et  
al. Elaboration of novel polyaniline@ Almond shell biocomposite  
for effective removal of hexavalent chromium ions and Orange G  
dye from aqueous solutions. Environmental Science and Pollution  
Research. 2020:1-14.  
3
dye  
adsorption.  
Journal  
of  
Materials  
Chemistry.  
2012;22(35):18244-51.  
3
3
6. Malik A, Khan A, Humayun M. Preparation and chemical  
modification of rice husk char for the removal of a toxic dye  
57. Zhang L, Cheng Z, Guo X, Jiang X, Liu R. Process optimization,  
kinetics and equilibrium of orange G and acid orange 7 adsorptions  
onto chitosan/surfactant. Journal of Molecular Liquids.  
2014;197:353-67.  
58. Konaganti VK, Kota R, Patil S, Madras G. Adsorption of anionic  
dyes on chitosan grafted poly (alkyl methacrylate) s. Chemical  
engineering journal. 2010;158(3):393-401.  
(Orange G) from aqueous medium. Zeitschrift für Physikalische  
Chemie. 2019;233(3):375-92.  
7. Banerjee S, Gautam RK, Jaiswal A, Gautam PK, Chattopadhyaya  
MC. Study on adsorption behavior of Acid Orange 10 onto  
modified wheat husk. Desalination and Water Treatment.  
2
016;57(26):12302-15.  
59. Wu X-J, Wang J-D, Cao L-Q. Characterization and adsorption  
performance of chitosan/diatomite membranes for Orange G  
removal. e-Polymers. 2016;16(2):99-109.  
60. Sand ZP, Nastasović AB, Jović‐Jovičić NP, Milutinović‐Nikolić  
AD, Jovanović DM. Sorption of textile dye from aqueous solution  
by macroporous amino‐functionalized copolymer. Journal of  
Applied Polymer Science. 2011;121(1):234-42.  
3
3
8. Kumar S, Ahluwalia AS, Charaya MU. Adsorption of Orange-G  
dye by the dried powdered biomass of Chlorella vulgaris  
Beijerinck. Current Science. 2019;116(4):604.  
9. Mohammed RA, Al-Mammar DE. Using Tobacco Leaves as  
Adsorbent for the Orange-G Dye Removal from its Aqueous  
Solutions. 2009.  
4
4
0. Guan Z, Lv J, Bai P, Guo X. Boron removal from aqueous  
solutions by adsorptionA review. Desalination. 2016;383:29-37.  
1. Imam SS, Babamale HF. A Short Review on the Removal of  
Rhodamine B Dye Using Agricultural Waste-Based Adsorbents.  
Asian Journal of Chemical Sciences. 2020:25-37.  
61. Xiao L, Xiong Y, Tian S, He C, Su Q, Wen Z. One-dimensional  
coordination supramolecular polymer [Cu (bipy)(SO4)] n as an  
adsorbent for adsorption and kinetic separation of anionic dyes.  
Chemical Engineering Journal. 2015;265:157-63.  
62. Mall ID, Srivastava VC, Agarwal NK. Removal of Orange-G and  
Methyl Violet dyes by adsorption onto bagasse fly ashkinetic  
study and equilibrium isotherm analyses. Dyes and pigments.  
2006;69(3):210-23.  
4
2. Habuda-Stan M, Ravančić ME, Flanagan A. A review on  
adsorption of fluoride from aqueous solution. Materials.  
2
014;7(9):6317-66.  
326  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 318-327  
6
3. Mubarak N, Fo Y, Al-Salim HS, Sahu J, Abdullah E, Nizamuddin  
S, et al. Removal of methylene blue and orange-G from waste  
water using magnetic biochar. International Journal of  
Nanoscience. 2015;14(04):1550009.  
6
6
6
4. Anbia M, Hariri SA, Ashrafizadeh S. Adsorptive removal of  
anionic dyes by modified nanoporous silica SBA-3. Applied  
Surface Science. 2010;256(10):3228-33.  
5. Atia AA, Donia AM, Al-Amrani WA. Adsorption/desorption  
behavior of acid orange 10 on magnetic silica modified with amine  
groups. Chemical Engineering Journal. 2009;150(1):55-62.  
6. Zheng X, Zheng H, Zhou Y, Sun Y, Zhao R, Liu Y, et al. Enhanced  
adsorption of Orange G from aqueous solutions by quaternary  
ammonium group-rich magnetic nanoparticles. Colloids and  
Surfaces A: Physicochemical and Engineering Aspects.  
2
019;580:123746.  
6
6
6
7. Greluk M, Hubicki Z. Effect of basicity of anion exchangers and  
number and positions of sulfonic groups of acid dyes on dyes  
adsorption on macroporous anion exchangers with styrenic  
polymer matrix. Chemical engineering journal. 2013;215:731-9.  
8. Zhou L, Jin J, Liu Z, Liang X, Shang C. Adsorption of acid dyes  
from aqueous solutions by the ethylenediamine-modified magnetic  
chitosan nanoparticles. Journal of hazardous materials.  
2
011;185(2-3):1045-52.  
9. Deng J-H, Zhang X-R, Zeng G-M, Gong J-L, Niu Q-Y, Liang J.  
Simultaneous removal of Cd (II) and ionic dyes from aqueous  
solution using magnetic graphene oxide nanocomposite as an  
adsorbent. Chemical Engineering Journal. 2013;226:189-200.  
0. Budiman H, Zuas O. Adsorption isotherm studies on acid orange-  
7
7
1
0 dye removal using cerium dioxide nanoparticles. Indonesian  
Journal of Chemistry. 2014;14(3):226-32.  
1. Wang T, Zhao P, Lu N, Chen H, Zhang C, Hou X. Facile  
fabrication of Fe3O4/MIL-101 (Cr) for effective removal of acid  
red 1 and orange G from aqueous solution. Chemical Engineering  
Journal. 2016;295:403-13.  
7
7
2. Banerjee S, Dubey S, Gautam RK, Chattopadhyaya M, Sharma  
YC. Adsorption characteristics of alumina nanoparticles for the  
removal of hazardous dye, Orange G from aqueous solutions.  
Arabian Journal of Chemistry. 2019;12(8):5339-54.  
3. Sutirman ZA, Sanagi MM, Abd Karim KJ, Naim AA, Ibrahim  
WAW. Enhanced removal of Orange G from aqueous solutions by  
modified chitosan beads: Performance and mechanism.  
International  
journal  
of  
biological  
macromolecules.  
2
019;133:1260-7.  
7
7
4. Pan Z, Zhang X, Wang X. Adsorption of acid orange 10 on cross-  
linked porous polyimide. SN Applied Sciences. 2019;1(3):239.  
5. Sharma S, Saxena R, Gaur G. Study of removal techniques for azo  
dyes by biosorption: a review. IOSR J Appl Chem. 2014;7:6-21.  
327