Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 289-296  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/296  
Removal of TDS and TSS from Industrial  
Wastewater using Fly Ash  
Nehal M. Ashour , Mohamed Bassyouni 2, 3*, Mamdouh Y. Saleh 1  
1
1
Sanitary and Environmental Engineering, Department of Civil Engineering, Faculty of Engineering, Port Said University, Port Said 42526, Egypt  
2
Department of Chemical Engineering, Faculty of Engineering, Port Said University, Port Said 42526, Egypt  
3
Materials Science Program, University of Science and Technology, Zewail City of Science and Technology, October Gardens, 6th of October, Giza 12578,  
Egypt  
Received: 15/09/2020  
Accepted: 17/11/2020  
Published: 20/03/2021  
Abstract  
Fly ash is one of the most abundant waste materials; its major components make it a potential agent for the adsorption of pollutants  
contaminants in water and wastewaters. In this study, fly ash obtained from burning of mazut was dried and sieved into different fractions  
(
600, 300, 150, 75µm). A pilot plant with an industrial discharge flow of 200L/hr was designed for reducing total Dissolved Solids (TDS),  
total suspended solids (TSS), conductivity and pH from industrial wastewater. The concentrations of (TDS), (TSS), conductivity and pH in  
industrial discharge flow had an average range of 80000, 750, 120000 mg/L and 13 respectively. The optimization of the treatment process  
using 5, 8, 12, 15 g/L fly ash dosage had succeeded in improving the removal efficiency of (TDS), (TSS), conductivity and pH to 90%,  
9
2.3%, 90% and 93.5% respectively.  
Keywords: Adsorbent; Wastewater; Fly ash, Low cost  
1
properties of fly ash differ according to the type of coal from  
which this ash was issued, as there are four different types of coal  
whose properties depend on the chemical composition,  
temperature, ash content and the origin of geological coal.  
Lignite, anthracite, sub-bituminous and bituminous are the most  
common type of coal. The composition of fly ash from burning  
bituminous is mostly calcium, magnesium and silica.  
1
Introduction  
Industry contributes to the emission of large quantities of  
pollutants and increases the concentration of elements that cause  
water pollution and that harm living organisms [1]. Several  
methods are applied for the treatment of wastewater and water [2-  
1
0]. Adsorption is considered the most flexible technique among  
many methods used for the treatment of water and waste water.  
Scientists have found that the most used material for water and  
wastewater treatment is active carbon because it is highly  
effective for adsorption. [11]. If it is possible to convert some  
solid waste and agricultural waste into valuable applications such  
as absorbent materials used in treating sewage and water from  
pollutants, then it is one of the important and beneficial uses of  
that waste [12]. Given the solid waste as low-cost adsorbents can  
be used, emission controls can have a double-fold benefit. First,  
the amount of waste materials might be partially reduced, and  
second, if created, the low cost adsorbent might minimize  
wastewater pollution at economic cost. In order to extract  
different types of contaminants from water and wastewater,  
various industrial waste such as slag, fly ash, sludge and red mud  
are investigated as adsorbents.  
Fly ash contains boron, selenium, manganese, arsenic,  
chromium, vanadium, sodium and cadmium in abundant  
Figure 1: Lignite, anthracite coal and bituminous Chemical composition  
2 3 3 2 3 2 2 2  
quantities [13]. Fe O ,SO , CaO, Al O , MgO, Na O, SiO , TiO ,  
and K O are the most important constituents of fly ash[14]. The  
2
*
Corresponding author: Mohamed Bassyouni, (a) Department of Chemical Engineering, Faculty of Engineering, Port Said University, Port  
Said 42526, Egypt and (b) Materials Science Program, University of Science and Technology, Zewail City of Science and Technology,  
October Gardens, 6th of October, Giza 12578, Egypt. E-mail: migb2000@hotmail.com ; Tel.: +2-011-596-75357  
289  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 289-296  
The extent to which fly ash contains calcium, silica, ammonia,  
and iron oxide defines the fly ash category, and they are two class  
classes f and c, as it is the main difference between the two  
categories [15-16]. Fig. 1 displays the chemical composition of  
anthracite, bituminous, and lignite ash from coal. Fly ash can be  
used to separate heavy metals from wastewater as an adsorption  
method. [17-20]. The adsorption processes can be regulated using  
mass transfer, particle diffusion, chemical reactions and methods  
amounts of each negative and positive charge remain equivalent.  
This means that while water conductivity increases with added  
ions, electrically neutral conductivity remains [40]. pH is similar  
to temperature; each of them has a specific value. The pH value  
ranges from 0 to 14. As the number 7 expresses that water is  
neutral. The lower the number than 7 is an indication of the acidity  
of the water, and the higher the number than 7, the more alkaline  
the water is [41, 42]. The reason for the decrease in the pH below  
number 7 is due to the presence of hydrogen ions and the reason  
for the increase in the pH above number 7 due to the presence of  
hydroxyl ions. In neutral waters, the concentration of both  
[
21]. The key components in fly ash are SiO and Al O , where  
2 2 3  
SiO material is more susceptible to heavy metal adsorption  
2
because of complex lone pair hybridization [22] or lone pair  
electron. Because of its high removal of different contaminants,  
such as many heavy metal elements, fly ash has demonstrated to  
scientists its high efficacy in the treatment of industrial and waste  
water, and scientists are currently looking to use effective  
methods to enhance the surface properties of fly ash to make it  
more capable and effective in removing pollutants. Chemical  
treatments using acid or alkali as well as physical methods such  
as laser, ultrasonic, microwave, or plasma therapy are among  
these methods. The mazut fly ash (MFA) is a combustion product  
produced by the burning of mazut at power stations. This fuel is  
a heavy residual oil of the petroleum refineries distillation or  
cracking units. MFA is obtained from flue gas purification  
machines. MFA is generally known as toxic waste; however,  
certain studies indicate that MFA inorganic matter can be of  
industrial value to recover useful elements, including V and Ni  
^
-7  
hydrogen and hydroxyl ions is 10 M. For example, if the  
hydrogen concentration increases, the hydroxyl concentration  
decreases with it, and vice versa, so that their sum does not exceed  
^
-14  
10 [43]. pH is very important for the life of living things in the  
water, as all of them will die if the pH drops or increases to a high  
degree. The pH has an effect on the presence of heavy and toxic  
metals in the water and their solubility in it. The best pH number  
suitable for living organisms in the water ranges between 6.5 and  
9 [44-47].  
2
Materials and Methods  
2
.1 Aim of Study  
Industries in developed countries have seen rapid growth in  
recent years. These factories discharge wastewater that carries  
high levels of dissolved solids and demand for chemical oxygen.  
These effluents, which comply with the regulations imposed on  
industrial sectors, should be handled for safe disposal. This  
research aims to improve the efficiency of TSS, TDS,  
Conductivity and pH removal of industrial wastewater by adding  
an inexpensive adsorbent such as fly ash.  
[2228]. In fact, the carbonaceous fraction of MFA can be used  
as a black pigment for cementitious content production [29].  
The composite composition of Total Dissolved Solids (TDS)  
is a mixture of both organic and inorganic compounds in a  
suspended chemical, ionized or micro-granular (colloidal) form.  
In general, the practical meaning is that the solids (often  
abbreviated TDS) must be low enough to withstand filtration by  
a two micrometer sieve size [30]. Complete hardness, organic  
ions, bicarbonate, alkalinity, sulphate, sodium, calcium, nitrate,  
magnesium, phosphate, iron, chloride and carbonate can be used.  
For aquatic life, a certain level of those ions is necessary in water.  
Changes in concentrations of TDS can be harmful. The flow of  
water into and out of an organism's cells is determined by water  
density. In industrial wastewater, steel production,  
pharmaceutical manufacturing, mining activities, oil and gas  
exploration, and food processing facilities are major sources of  
TDS. Furthermore, salts used for road deicing may make a major  
contribution to the charging of water sources by TDS.  
Concentrations of TDS in water vary in various geographical  
regions due to varying mineral solubility. Total solids values  
range between 30, 65 and 195: 1100 mg/l for water in contact with  
granite, rocky areas and sedimentary areas. [31-34]. The  
concentration of ions in the water gives it the ability to pass  
electric flow, and this property is expressed by electrical  
conductivity [35-36]. There is a strong direct relationship  
between the presence of ions in the water and between the  
conductivity, for example, water that contains a small number of  
ions has a weak conductivity, so we find that the distillate will not  
be used as an electrical insulator [37]. In contrast, water that  
contains a large number of ions is highly conductive, as is sea  
water, which is characterized by its high conductivity [38].  
On account of their negative and positive charges, ions bear  
power [39]. They break into particles which are negatively  
charged (cation) and positively charged (anion) as electrolytes  
dissolve in water. As the dissolved compounds break in water, the  
2
.2 Preparation of adsorbent  
Raw fly ash was collected as a solid waste material from  
mazut burning, which used in one of the brick factories in Giza,  
Egypt. For the adsorption of contaminants from the industrial  
wastewater effluent, FA was used. FA collected from burning of  
mazut was dried and sieved into various fractions (600, 300, 150,  
75µm) using test sieve shaker (Endecott EF1) in soil and  
foundations laboratory, faculty of engineering, portsaid  
university, Egypt. The size fractions were preserved in glass  
bottles for use as an adsorbent. Fly ash with particle size of 300–  
600 µm was used in all the experiments.  
2.3 Model Description and Operation  
The work was performed on a scaled pilot plant in this  
research. Four tanks were composed of the model system used.  
Tank 1 is a Chemical feed unit made of galvanized tin sheets with  
capacity of 27 L (30*30*30 cm). Tank 2 is a circular mixing tank  
made of galvanized tin sheets (50cm diameter and 10cm depth).  
A motor was used for mixing with 100 rpm in speed. Tank 3 is a  
circular sedimentation tank (100 cm diameter and 15 cm depth)  
made of galvanized tin sheets. The settled fly ash was natural  
scared slowly to the bottom of the settling tank. Tank 4 is a glass  
tank with flow rate = 0.5 m3 / m2 / hr. The designed filter is (35  
*
35 * 80 cm3) tank perforated at the bottom with 9 holes 0.5 cm  
in diameter for each. It was made from glass and contains a  
filtration media of two layers; a bottom layer of 20 cm in depth of  
gravel with gradation between 3mm to 20mm lays under a layer  
of sand with 30 cm in depth.  
290  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 289-296  
Figure 2. Flow chart of Pilot plant for the model  
The mixing tank's total volume was 20L with a detention time  
of 40 minutes. The volume of sedimentation tank is 120 L. The  
water stays for an hour in this tank. With a constant temperature,  
the water flow was 200 L / hr as shown in Figure 2.  
2.3.3. Conductivity  
The conductivity electrode was used to determine the quantity  
of the dissolved solids in the influent wastewater to the mixing  
tank and the effluent from the filter.  
2
.4. Sample Collection Points  
The pilot plant had two collection points for the samples. To  
2.3.4. pH-value  
The pH-value is the acid or base intensity measured on a scale  
from 0.0 to 14.0. Technically it is the logarithm equivalent of the  
concentration of hydrogen ions. The pH-value was measured for  
the influent to the mixing tank without chemicals addition and the  
effluent from the filter. The pH-value was measured using the  
analyze the characteristics of wastewater, those points were very  
significant. The positions were first, the pilot plant influential;  
second, the downstream pilot plant effluent from the filtration  
unit.  
"Digital pH meter" For pH-value determinations the meter was  
calibrated using buffers of 4.0, 6.86 and 9.18.  
3
Experimentation  
3
.1. Experimental Work  
The dosages of FA used, in mixing tank, ranged from 5 g/L  
4 Results and Discussion  
to 15 g/L followed by 40 minutes of shaking with speed of 100  
rpm. After shaking of the samples they were subjected to analysis.  
After that stage of mixing with adsorbent goes to the filtration  
unit. The experimental work was divided into four groups using  
FA (with dosages of 5, 8, 12 and 15 g/L) each group was carried  
out in 8 days and samples were collected 3 times each day.  
4.1 Effect of FA dose  
As shown in Figure 3, the percent removal of pollutants  
increased with the increase in the adsorbent dosage due to the  
increase in the area of the adsorbent surface. At the 15 g / l  
adsorbent concentration for TDS, TSS, conductivity and pH, the  
maximum average removal rate of 88.6, 91.44, 88, 90.08 percent  
occurred.  
3
.2. Analysis of Wastewater  
In this research, the parameters of the industrial wastewater  
Conductivity Efficiency  
pH efficiency  
1
00.00%  
8.00%  
96.00%  
were measured before being treated and entered into the pilot  
plant, and the influential water produced after the treatment  
process was also measured. Water samples coming out of this  
model were collected over a 24-hour period and mixed well  
before measure. The samples were taken at 9.00 a.m. three times  
a day, at 11.00 a.m. at daily intervals. And, at 1.00 p.m., the peak  
time was contaminated.  
9
TDS efficiency  
9
9
9
8
8
4.00%  
2.00%  
0.00%  
8.00%  
6.00%  
TSS efficiency  
2
.3.1. Total dissolved solids (TDS)  
Dissolved solids are considered the solids found in the filtrate  
that passes through a filter with a nominal pore size of 2μm or  
less. The conductivity electrode was used to assess the quantity of  
the dissolved solids in the influential wastewater from the filter to  
the mixing tank and the effluent, and calculated by ppm.  
84.00%  
8
8
2.00%  
0.00%  
4
9
14  
19  
FA DOSAGE GM/L  
2
.3.2. Total suspended solids (TSS)  
This test used to measure the quantity of the suspended solids  
Figure 3: Effect of FA dose on pollutants removal  
in the influent wastewater to the mixing tank and the effluent from  
the filter. The theory of this test is the residue that is ignited to  
4.1.1 TDS  
5
50 + 50 ° C from the filtered sample. The remaining solids are  
The total dissolved solids (TDS) of the influent during the 8  
days ranged from 29110 mg/l to 90210 g/l with average of 62366  
mg/l. After treatment, the TDS of the effluent ranged from 4321  
the stable suspended solids while the volatile solids are the weight  
lost after ignition.  
291  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 289-296  
mg/l to 10110 mg/l with average of 7094 mg/l and maximum  
efficiency of removal equals to 90.25% occurs at max TDS  
influent with 15 g/l FA dose. These results prove that FA is very  
effective in removing TDS due to accumulation of atoms on the  
surface area of the adsorbent (FA) and concentration of these  
materials. Figure 4. Shows difference between TDS concentration  
values in influent and effluent for the different FA doses. Figure  
5
g/l  
8 g/l  
12 g/l  
15g/l  
100.00%  
9
9
9
8.00%  
6.00%  
4.00%  
92.00%  
90.00%  
5
. Shows difference between TDS removal efficiency for the  
different FA doses. Figure 6. Shows difference between q mg/g  
values for the different FA doses.  
8
8
8
8
8.00%  
6.00%  
4.00%  
2.00%  
5
g/l  
8 g/l  
12 g/l  
15g/l  
inffluent  
0
1
2
3
4
RENTRATION TIME (DAY)  
Figure 5: TDS removal efficiency for the different FA doses  
5
6
7
8
9
1
8000  
6000  
5g/l  
8 g/l  
12g/l  
15g/l  
1
4
0000  
14000  
1
1
2000  
0000  
8
6
4
2
000  
000  
000  
000  
0
0
1
2
3
RENTRATION TIME (DAY)  
Figure 6: q mg/g values for the different FA doses  
4
5
6
7
8
9
5
1
g/l  
8 g/l  
12 g/l  
5g/l  
inffluent  
4
000  
0
1
2
3
4
5
6
7
8
9
RETENTION TIME (DAY)  
3
00  
Figure 4: TDS concentration values in influent and effluent for the  
different FA doses  
4
.1.2 TSS  
The total suspended solids (TSS) of the influent during the 8  
days ranged from 310 mg/l to 750 g/l with average of 572 mg/l.  
After treatment, the TDS of the effluent ranged from 35 mg/l to  
7
2 mg/l with average of 51 mg/l and maximum efficiency of  
removal equals to 92.62% occurs at 15 g/l FA dose. These results  
prove that FA is very effective in removing TSS due to  
accumulation of atoms on the surface area of the adsorbent (FA)  
and concentration of these materials. Figure 7. Shows difference  
between TSS concentration values in influent and effluent for the  
different FA doses. Figure 8. Shows difference between TSS  
removal efficiency for the different FA doses. Figure 9. Shows  
difference between q mg/g values for the different FA doses.  
3
0
0
1
2
3
4
5
6
7
8
9
RENTRATION TIME (DAY)  
Figure 7: TSS concentration values in influent and effluent for the  
different FA doses  
292  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 289-296  
5
g/l  
8 g/l  
12 g/l  
15g/l  
inffluent  
1
00.00%  
5g/l  
2 g/l  
8 g/l  
9
9
9
9
9
8
8
8.00%  
6.00%  
4.00%  
2.00%  
0.00%  
8.00%  
6.00%  
1
15g/l  
5
0000  
0
1
2
3
4
5
6
7
8
9
RENTRATION TIME (DAY)  
Figure 8: TSS removal efficiency for the different FA doses  
5000  
0
1
2
3
4
5
6
7
8
9
RENTRATION TIME (DAY)  
5
g/l  
8 g/l  
12 g/l  
15g/l  
1
1
1
1
60  
40  
20  
00  
Figure 10: Conductivity values in influent and effluent for the different  
FA doses  
5
00.00%  
g/l  
8 g/l  
12 g/l  
15g/l  
1
9
9
8.00%  
6.00%  
8
6
4
2
0
0
0
0
0
94.00%  
92.00%  
9
8
0.00%  
8.00%  
0
1
2
3
4
RENTRATION TIME (DAY)  
Figure 9: q mg/g values for the different FA doses  
5
6
7
8
9
86.00%  
84.00%  
82.00%  
8
0.00%  
4
.1.3 Conductivity  
The Conductivity of the influent during the 8 days ranged  
0
1
2
3
4
5
6
7
8
9
RENTRATION TIME (DAY)  
from 45500 to 130700 g/l with average of 90863. After treatment,  
the Conductivity of the effluent ranged from 14990 to 2660 with  
average of 11837 and maximum efficiency of removal equals to  
Figure 11: Conductivity removal efficiency for the different FA doses  
4
.1.4 pH  
9
0.49% occurs at 15 g/l FA dose. These results prove that FA is  
pH of the influent during the 8 days ranged from 10.8 to 12.8  
very effective in reducing conductivity due to accumulation of  
atoms on the surface area of the adsorbent (FA) and concentration  
of these materials. The fly ash adsorbed heavy metals from  
industrial wastewater, reducing the electrical conductivity. Figure  
with average of 11.8. After treatment, the pH of the effluent  
ranged from 7.3 to 8.1 with average of 7.6 and maximum  
efficiency of removal equals to 93.5% occurs at 15 g/l FA dose.  
These results prove that FA is very effective in removing pH due  
to accumulation of atoms on the surface area of the adsorbent  
1
0. Shows difference between Conductivity values in influent and  
effluent for the different FA doses. Figure 11. Shows difference  
between Conductivity removal efficiency for the different FA  
doses.  
(
FA) and concentration of these materials. Figure 12. Shows  
difference between pH values in influent and effluent for the  
different FA doses. Figure 13. Shows difference between pH  
removal efficiency for the different FA doses.  
293  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 289-296  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
5
g/l  
8 g/l  
12 g/l  
15g/l  
inffluent  
1
1
1
1
1
4
3
2
1
0
9
8
7
(
avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
submitted work is original and has not been published elsewhere  
in any language.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
Authors’ contribution  
All authors of this study have a complete contribution for data  
collection, data analyses and manuscript writing.  
References  
0
1
2
3
4
RENTRATION TIME (DAY)  
Figure 12: pH values in influent and effluent for the different FA doses  
5
6
7
8
9
1
Elhady, Sarah, Mohamed Bassyouni, Ramadan A. Mansour, Medhat  
H. Elzahar, Shereen Abdel-Hamid, Yasser Elhenawy, and Mamdou  
Y. Saleh. "Oily Wastewater Treatment Using Polyamide Thin Film  
Composite Membrane Technology." Membranes 10, no. 5 (2020):  
8
4.  
2
3
Bassyouni, M., M. H. Abdel-Aziz, M. Sh Zoromba, S. M. S. Abdel-  
Hamid, and Enrico Drioli. "A review of polymeric nanocomposite  
membranes for water purification." Journal of Industrial and  
Engineering Chemistry 73 (2019): 19-46.  
Zoromba, M. Sh, Mohamed IM Ismail, M. Bassyouni, M. H. Abdel-  
Aziz, Numan Salah, Ahmed Alshahrie, and Adnan Memic.  
5
g/l  
8 g/l  
12 g/l  
15g/l  
1
00.00%  
9
9
8
8
7
7
5.00%  
0.00%  
5.00%  
0.00%  
5.00%  
0.00%  
"Fabrication and characterization of poly (aniline-co-o-anthranilic  
acid)/magnetite nanocomposites and their application in wastewater  
treatment." Colloids and Surfaces A: Physicochemical and  
Engineering Aspects 520 (2017): 121-130.  
Elrasheedy, Asmaa, Norhan Nady, Mohamed Bassyouni, and Ahmed  
El-Shazly. "Metal organic framework based polymer mixed matrix  
4
5
membranes:  
Review  
on  
applications  
in  
water  
purification." Membranes 9, no. 7 (2019): 88.  
Elminshawy, Nabil AS, M. El-Ghandour, Y. Elhenawy, M.  
Bassyouni, D. G. El-Damhogi, and Mohammad F. Addas.  
"Experimental investigation of a V-trough PV concentrator integrated  
with buried water heat exchanger cooling system." Solar  
a
0
1
2
3
4
RENTRATION TIME (DAY)  
Figure 13: pH values in influent and effluent for the different FA doses  
5
6
7
8
9
Energy 193 (2019): 706-714.  
Gutub, Saud A., M. Bassyouni, and S. M. S. Abdel-Hamid.  
6
7
"Dissolved solids adsorption of freshwater using synthesized bio-  
foam composite." Life Science Journal 10, no. 2 (2013): 464-471.  
Abdel-Aziz, M. H., E. S. Z. El-Ashtoukhy, M. Sh Zoromba, and M.  
Bassyouni. "Oil-in-water emulsion breaking by electrocoagulation in  
a modified electrochemical cell." Int. J. Electrochem. Sci 11 (2016):  
9634-9643.  
Abdel-Aziz, M. H., E. S. Z. El-Ashtoukhy, M. Sh Zoromba, and M.  
Bassyouni. "Oil-in-water emulsion breaking by electrocoagulation in  
a modified electrochemical cell." Int. J. Electrochem. Sci 11 (2016):  
5
Conclusion  
The Fly ash with particle size of 300 600 µm achieved high  
sedimentation efficiency and did not produce particles floating on  
the surface. The detention time of 30 minutes in the tank was  
sufficient for mixing and one hour for the total sedimentation. The  
most effective dosage in removing TDS was 15 g/l of FA. 90 %  
of TDS were removed using this dosage. The increasing in the  
influent TDS values the increasing in removal efficiency. The  
highest efficiency of TSS removal was observed in the fourth  
dosage (dosage =15 g\l of FA & η =92.3%). The highest  
efficiency of conductivity removal was observed in the fourth  
dosage (dosage =15 g\l of FA & η =90%). The highest efficiency  
of pH was observed in the fourth dosage (dosage =15 g\l of FA &  
η =93%).  
8
9
9
634-9643.  
Fouad, Kareem, Mohamed Gar Alalm, Mohamed Bassyouni, and  
Mamdouh Y. Saleh. "A novel photocatalytic reactor for the extended  
reuse  
of  
WTiO2  
in  
the  
degradation  
of  
sulfamethazine." Chemosphere (2020): 127270.  
10 Elminshawy, Nabil AS, Mamdouh A. Gadalla, M. Bassyouni, Kamal  
El-Nahhas, Ahmed Elminshawy, and Y. Elhenawy. "A novel  
concentrated photovoltaic-driven membrane distillation hybrid  
system for the simultaneous production of electricity and potable  
water." Renewable Energy 162 (2020): 802-817.  
1
1
C. G. Rocha, D. A. Zaia, R. V. Alfaya, and A. A. Alfaya, "Use of rice  
straw as biosorbent for removal of Cu(II), Zn(II), Cd(II) and Hg(II)  
294  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 289-296  
ions in industrial effluents," Journal of Hazardous Materials, vol. 166,  
no. 1, pp. 383-388, 2009.  
Abdel-Hamid, S. M. S., O. A. Al-Qabandi, Elminshawy NAS, M.  
Bassyouni, M. S. Zoromba, M. H. Abdel-Aziz, and H. Mira.  
32 Saleh MY, Enany GE, Elzahar MH, Elshikhipy MZ, Hamouda R.  
Removal of lead in high rate activated sludge system. International  
Journal of Environmental and Ecological Engineering. 2014 Mar  
1;8(4):413-8.  
1
1
2
3
"
Fabrication and Characterization of Microcellular Polyurethane  
33 Rainwater FH, Thatcher LL. Methods for collection and analysis of  
water samples. US Government Printing Office; 1960.  
34 Kormondy, E.J.: Concepts of ecology. Prentice-Hall, Englewood  
Cliffs, NJ. p. 182 (1969).  
35 Garrison Investigative Board. Water quality report (Appendix A).  
Garrison Diversion Study, report to the International Joint  
Commission (1977).  
36 Durfor, C.J. and Becker, E.: Constituents and properties of water.In:  
Water quality in a stressed environment: readings in environmental  
hydrology. W.A. Pettyjohn (ed.). Burgess Publishing Company,  
Minneapolis, MN (1972).  
Sisal Biocomposites." Molecules 24, no. 24 (2019): 4585.  
Bhatnagar, Amit, Vítor JP Vilar, Cidália MS Botelho, and Rui AR  
Boaventura. "A review of the use of red mud as adsorbent for the  
removal of toxic pollutants from water and wastewater."  
Environmental technology 32, no. 3 (2011): 231-249.  
Lokeshappa, B., Dikshit, A.K., 2011. Disposal and Management of  
Fly Ash. International Conference on Life Science and Technology,  
vol. 3. IPCBEE, Singapore.  
Bhatt, M.S., 2006. Effect of ash in coal on the performance of coal  
fired thermal power plants. Part I: primary energy effects. Energy  
Sources Part A 28, 25e41.  
ASTMC 204, 1994. Test Method for Fineness of Portland Cement by  
Air Permeability Apparatus, Volume 04.02. American Society for  
Testing and Materials, Annual Book of ASTM Standards, West  
Conshohocken, Pennsylvania.  
1
1
1
4
5
6
37 EPA. (2012). 5.9 Conductivity. In Water: Monitoring and  
Retrieved  
38 Milliequivalents, Millimoles, and Milliosmoles (Powerpoint). (n.d.).  
1
1
1
7
8
9
Ram, L.C., Masto, R.E., 2010. An appraisal of the potential use of fly  
ash for reclaiming coal mine spoil. J. Environ. Manag. 91 (3),  
39 Perlman, H. (2014). Electrical Conductivity and Water. In The USGS  
6
03e617.  
C.H. Weng, C. P. Huang, Adsorption characteristics of Zn (II) from  
dilute aqueous solution by fly ash, Colloid Surface A, 247 (2004)  
Water  
Science  
School.  
Retrieved  
from  
http://ga.water.usgs.gov/edu/electrical-conductivity.html  
1
37- 143  
40 Miller, R. L., Bradford, W. L., & Peters, N. E. (1988). Specific  
Conductance: Theoretical Considerations and Application to  
43 USGS. (2013). Water Properties: pH. In The USGS Water Science  
44 Mabrouk, Abdel Nasser, Yasser Elhenawy, Mohamed Abdelkader,  
and Mohamed Shatat. "The impact of baffle orientation on the  
performance of the hollow fiber membrane distillation." Desalin.  
Water Treat 58 (2017): 35-45.  
K.S. Hui, C.Y.H. Chao, S.C. Kot, Removal of mixed heavy metal ions  
in wastewater by zeolite 4 A and residual products from recycled coal  
fly ash, J Hazard Mater, 127 (2005) 89-101  
I.J. Alinnor, Adsorptionof Heavy metal ions from aqueous solution  
by fly ash, Fuel, 86 (2007) 853-857  
2
2
0
1
Y.C. Sharma, U.S.N. Singh, P.F. Gode, Fly ash for the removal of  
Mn(II) from aqueous solutions and wastewaters, Chem Eng J,  
1
32(2007) 319-323  
2
2
2
2
2
3
4
5
N. Unlu, M. Ersoz, Adsorption characteristics of heavy metal ions  
onto a low cost biopolymeric sorbent from aqueous solutions, J  
Hazard Mater, 136 (2006) 272-280  
B. Bayat, Comparative study of adsorption properties of turkish fly  
ashes, I. The case of nickel (II), copper (II) and Zinc (II), J Hazard  
Mater, 95 (2002) 251-273  
Yu Y. T., B. G. Kim, Y. Y. Choi, S. Y. Hong, S. K. Hwang, J. H. Park  
Author Profile  
(1996) J. Korea Solid Wastes Engineering Society, 13, No 2, 236–  
Nehal Ashour is a teaching assistant in the  
Civil Engineering Department, Faculty of  
Engineering, Port Said University, Port Said,  
Egypt.  
2
46.  
Vassileva CG, Daher DF, Vassilev SV. Chemical and phase-mineral  
composition of mazut fly ash and slag generated from a Syrian power  
plant. Comptes rendus de l’Académie bulgare des Sciences. 2015 Jan  
1
;68(10).  
2
6
Vitolo S, Seggiani M, Falaschi F. Recovery of vanadium from a  
previously burned heavy oil fly ash. Hydrometallurgy. 2001 Dec  
Mohamed Bassyouni is  
a Professor of  
1
;62(3):145-50.  
Chemical Engineering. He has completed a  
postdoctoral at TU-Clausthal, Germany in the  
area of materials processing. He holds a Ph.D.  
in Chemical Engineering, Cairo University. He  
received his master degree in Environmental  
Engineering from TU-HH, Germany. He  
obtained his undergraduate degree in Chemical  
Engineering. He is a member of the Editorial  
Board of International Institute of Chemical,  
Biological and Environmental Engineering and  
the journal of Engineering-Port Said  
University. He won the 2014 Dr. Venice  
Kamel Award (Academic of Scientific  
Research and Technology) for Scientific  
Creativity for Young Researchers in the field  
of materials science and its applications.  
2
2
7
8
Amer AM. Processing of Egyptian boiler-ash for extraction of  
vanadium and nickel. Waste Management. 2002 Aug 1;22(5):515-20.  
Vassileva CG, Daher DF, Vassilev SV. Chemical and phase-mineral  
composition of mazut fly ash and slag generated from a Syrian power  
plant. Comptes rendus de l’Académie bulgare des Sciences. 2015 Jan  
1
;68(10).  
2
3
9
0
Reijnders L. Disposal, uses and treatments of combustion ashes: a  
review. Resources, Conservation and Recycling. 2005 Feb  
1
Al-Ghouti MA, Al-Degs YS, Ghrair A, Khoury H, Ziedan M.  
Extraction and separation of vanadium and nickel from fly ash  
produced in heavy fuel power plants. Chemical Engineering Journal.  
;43(3):313-36.  
2
011 Sep 1;173(1):191-7.  
3
1
Vassileva CG, Daher DF, Vassilev SV. Chemical and phase-mineral  
composition of mazut fly ash and slag generated from a Syrian power  
plant. Comptes rendus de l’Académie bulgare des Sciences. 2015 Jan  
1
;68(10).  
295  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 289-296  
Mamdouh Youssif Saleh is a professor in  
the Civil Engineering Department,  
specializing in sanitary and  
environmental engineering with an  
emphasis on wastewater treatment since  
2
009. His research focuses on using A-B  
waste activated sludge system for  
wastewater treatment. He was born in  
Port Said, Egypt in 1961. He was  
graduated from Faculty of Engineering,  
Suez Canal University in 1985. He  
received his M.Sc. degree in civil  
engineering from Suez Canal University,  
1
990. His got his Ph.D. degree in sanitary  
and environmental engineering in 1994,  
and completed via a cooperative research  
program between Suez Canal University,  
Port Said, Egypt and Aachen University,  
Aachen, Germany. He has more than 22  
international journal/conference papers  
published.  
296