Journal of Environmental Treatment Techniques  
2021 Volume 9, Issue 1, Pages: 95-104  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/9(1)104  
Surface Modification of Powdered Maize Husk with  
Sodium Hydroxide for Enhanced Adsorption of  
Pb(II) Ions from Aqueous Solution  
1
1
2
Chidi E. Duru * Margaret C. Enedoh , Ijeoma A. Duru  
1Surface Chemistry and Environmental Technology (SCENT) Research Unit, Department of Chemistry, Imo State University, Owerri, PMB 2000, Imo  
State, Nigeria.  
2
Federal University of Technology Owerri, Department of Chemistry, PMB 1526, Imo State Nigeria  
Received: 06/08/2020  
Accepted: 13/10/2020  
Published: 20/03/2021  
Abstract  
The impact of sodium hydroxide pretreatment of maize husk on its lead ion removal efficiency was investigated. Pretreatment of maize  
2
3
2
3
husk with this alkali increased its surface area and porosity from 528.74 m /g and 0.477 cm /g to 721.54 m /g and 0.642 cm /g,  
respectively. Batch adsorption studies were carried out to evaluate the effects of initial pH, adsorbent dose, initial lead ion concentration,  
initial solution temperature, and contact time on the adsorption process. The maximum removal efficiency of maize husk at pH 5 and  
adsorbent dose 2 g/L was 62.85 %, which increased to 82.84 % after pretreatment and was attained in 15 min. The adsorption data for the  
natural and pretreated maize husk were best fitted in the Freundlich isotherm model, with their adsorption intensity (n) having values >1,  
which indicated that lead ion adsorption onto the adsorbent types was a favorable physical process. The adsorption of lead ions onto the  
adsorbents followed the pseudo-first-order kinetic model. The experimental adsorption capacities of maize husk (31.43 mg/g) and its  
modified form (41.22 mg/g) were very close to those obtained from this model (31.03 mg/g and 40.65 mg/g respectively). The ΔH and ΔG  
values of the adsorption process showed that the adsorption of lead ions by both adsorbents was an endothermic process and occurred  
spontaneously. Alkali pretreated maize husk can therefore be used as a cheap adsorbent to remove lead ions from aqueous solution.  
Keywords: Lead, maize husk, adsorbent, pretreatment, isotherm  
1
lowered intelligence quotient, anemia, increased blood pressure,  
damage to the brain and kidneys, miscarriage, reduction in male  
fertility, blood disorders, and death [3].  
1
Introduction  
The various industrial activities going on in different parts of  
the world are the primary sources of soil and water pollution by  
heavy metals. Toxic metals like mercury, chromium, cadmium,  
arsenic, nickel, and lead have been reported to be in high  
concentrations in industrial wastewater due to different  
manufacturing activities [1]. The presence of lead in both  
surface and borehole water above regulated concentrations has  
been observed even though its widespread use was discontinued  
in many countries of the world [2]. It is still used in many  
industrial production processes like smelting, refining, car  
repair, battery manufacturing, and many others. It is highly  
poisonous and can affect almost every organ in the body,  
especially the nervous system. Its toxicity in children has a more  
significant impact than in adults because they have softer  
tissues, internal and external organs. It has resulted in severe  
health conditions like behavioral problems, learning deficits,  
Conventional treatment techniques like chemical  
precipitation, ion exchange, membrane process, crystallization,  
and electrochemical treatment have been used to remove toxic  
metals from polluted water [4]. These processes are expensive  
and inefficient when the heavy metal ions are contained in the  
water at concentrations below 100 mg/L [5]. Researchers are  
currently exploring the potentials of agro-waste materials in the  
adsorption of metal ions from polluted water [6, 7, 8, 9]. The  
findings from these studies have been very promising. The  
merits of using plant wastes in wastewater treatment include  
availability, low cost, selective adsorption of heavy metal ions,  
good adsorption capacity, and regeneration potential.  
Most adsorption studies have focused on the use of untreated  
plant wastes in heavy metal removal from water. Recently, the  
pretreatment of plant waste to extract soluble organic  
compounds introduced into the treated water and enhance their  
chelating efficiencies has been applied by many researchers  
Coresponding author: Chidi E. Duru, Surface Chemistry and  
Environmental Technology (SCENT) Research Unit,  
Department of Chemistry, Imo State University, Owerri, PMB  
[
10,11]. Pretreatment methods involving the use of different  
modifying agents like mineral and organic acid solutions  
hydrochloric acid, nitric acid, sulphuric acid, tartaric acid, citric  
acid, etc.), base solutions (sodium hydroxide, calcium  
(
2
000, Imo State, Nigeria. E-mail: chidiedbertduru@gmail.com,  
Tel: +2348037131739  
95  
Journal of Environmental Treatment Techniques  
2021 Volume 9, Issue 1, Pages: 95-104  
hydroxide, sodium carbonate), oxidizing agent (hydrogen  
peroxide), organic compounds (ethylenediamine, formaldehyde,  
methanol), to eliminate coloration of the aqueous solution,  
remove soluble organic compounds and increase metal  
adsorption efficiency have been applied in many studies  
2.2 Preparation of Metal Solutions  
All the chemicals used were of analytical reagent grade and  
were prepared with distilled water in all the experiments. The  
metal stock solution was prepared by dissolving appropriate  
3 2  
amounts of lead (II) nitrate, Pb(NO ) (M.W: 331.21 g/mol;  
[
12,13,14]. Chemical modification can sometimes improve the  
Assay: 99.0 %, Loba Chemie, India) in distilled water. Working  
standards were prepared by progressive dilution of the stock lead  
solution with distilled water.  
adsorption efficiency of biomass by increasing the number of  
binding sites, providing better ion-exchange properties, and  
forms new functional groups that favor metal uptake.  
Southeastern Nigeria and many other parts of the world  
produce millions of tons of maize kernel annually. The  
enormous amounts of maize husk waste generated after the  
harvest have posed serious disposal challenges in the towns and  
cities. Recently, it has been shown that this plant waste is rich in  
minerals like calcium, sulphur, potassium, and many  
phytochemicals with medicinal value [15]. Studies on applying  
this biomass as an adsorbent for zinc, iron, and copper uptake  
have given very promising results [16, 17, 18, 19]. There has  
been no attempt to use maize husk in the past or recent times,  
whether in natural or pretreated forms, to adsorb lead from  
aqueous solutions. In this study, the effect of initial solution pH,  
biomass load, initial metal concentration, and contact time on  
the adsorption of lead onto a natural and sodium hydroxide  
pretreated maize husk were determined. Isotherm and kinetic  
models were used to give a better insight into the mechanisms of  
the adsorption process.  
2.3 Experimental Procedure  
2.3.1 Analysis of physical and chemical properties of  
adsorbents  
The adsorbents’ surface areas and pore sizes were  
determined at 77 K from nitrogen adsorption isotherms using a  
High-Speed Surface Area and Pore Size Analyzer, Model: Nova  
4200e (Quantachrome Instruments, USA). Before analysis, the  
o
adsorbents were dried and degassed at 110 C until a residual  
vacuum of less than 0.02 mbar. The multi-point BET plot  
method was used to determine the specific surface areas, and the  
t-plot method was used to assess the microporosity of the  
adsorbent samples. The determination of the mineral element  
composition of H and HP was carried out using EDX3600B X-  
ray fluorescence spectrophotometer. The samples were  
pulverized to a fine homogenous size, and the resulting powder  
pelletized. The fluorescence spectrophotometer was calibrated  
using pure silver standard and the working curve for the sample  
selected before the samples’ energy dispersive X-ray spectra  
were obtained. Chemical analysis of the adsorbents was  
performed using Chesson-Datta gravimetric method [20, 21]. 1 g  
of the powdered adsorbent (v) was added into 150 mL of  
deionized water in a beaker, and the mixture was heated in a  
2
Materials and Methods  
2
.1 Adsorbent collection, preparation, and modification  
Maize seeds (genus Oba super II) from the National  
Agriculture Food Council, Umudike, Abia State Nigeria, were  
collected and planted by the researchers. At maturity, the husks  
were collected, thoroughly washed with tap water, and then  
rewashed with deionized water. They were sun-dried for two  
o
water bath at 100 C for 1 h. After this period, the mixture was  
allowed to cool, and the residue was obtained by filtration and  
rinsed with 300 mL warm deionized water. This residue was  
oven-dried to constant weight (w). It was then mixed with 150  
o
days and then oven-dried at 100 C for 4 h. The dried husks  
o
mL of 1 M H  
2
S0  
4
and heated in a water bath at 100 C for 1 h.  
were ground into powder using an electric grinder and sieved to  
a particle size of 30 mesh using American Society for Testing  
and Materials (ASTM) standard sieves. Maize husk powder (H)  
was then pretreated using NaOH solution. This process was  
carried out by soaking 10 g of H in 500 mL of 1 M solution of  
the alkali. The mixture was stirred for several minutes and  
allowed to stand for 24 hours. It was filtered, washed severally  
with deionized water until the filtrate was neutral to litmus, and  
then allowed to dry at room temperature for a few days. The  
dried crumbs of the modified maize husk (HP) were ground to a  
fine powder (Figure 1) and stored in a desiccator [19].  
The mixture was filtered, and the residue was rinsed with 300  
mL of deionized water and dried (x). It was immersed in 10 mL  
2
4
of 72 % H SO at ambient temperature for 4 h, and then 150 mL  
I M H SO was added into the mixture and refluxed in a water  
bath for 1 h. The solid obtained after refluxing was rinsed with  
2
4
o
400 mL of deionized water and heated in an oven at 105 C and  
weighed until a constant weight was achieved (y). The solid was  
finally heated in a kiln at 600 C till the attainment of ash. The  
ash obtained was cooled and weighed (z). The cellulose,  
hemicelluloses, and lignin content of H and HP were estimated  
as follows:  
o
푥−푦  
%
Cellulose =  
× 100  
(1)  
(2)  
(3)  
푤−푥  
× 100  
%
Hemicellulose =  
푦−푧  
× 100  
%
Lignin =  
2
.3.1 Adsorption studies  
The batch process was used in all the adsorption  
Figure 1: Conversion of maize husk into the pretreated form  
o
experiments in a thermostatic water bath shaker set at 30 C. 0.2  
g of adsorbent was placed in 250 mL Erlenmeyer flasks with  
100 mL solution of metal ions of the desired concentration.  
After agitation on the shaker water bath at 120 rpm over a  
96  
Journal of Environmental Treatment Techniques  
2021 Volume 9, Issue 1, Pages: 95-104  
o
predetermined operation time, the liquid phase was taken out  
and filtered using 0.45 µm membrane filters (Millipore  
Corporation, USA). The final concentration of metal ions in the  
filtrates was analyzed by a fast sequential flame atomic  
absorption spectrometer (AAS), model 240FS AA (Agilent  
Technologies, USA). All the instrumental conditions were  
optimized for maximum sensitivity, and measurements were  
performed in triplicates. The number of metal ions adsorbed at  
equilibrium per unit mass of adsorbent was calculated from Eq.  
given concentration and agitated for 30 min, at 30 C. An aliquot  
was collected from the flask after this time, filtered, and the  
concentration of lead ions in the filtrate determined.  
2.3.6 Thermodynamic studies  
The effect of temperature on the uptake of lead ions was  
conducted by contacting 0.2 g of each adsorbent with 100 mL of  
lead ion solution at pH 5, and an initial concentration of 100  
mg/L. the mixtures were agitated for 30 min in a water bath at  
o
4
. The percentage removal of lead ions from aqueous solution  
different temperatures (30, 35, 40, 45, and 50 C). The data  
(
% r) at a given time t, was calculated from Eq. 5.  
were used to compute and compare the adsorption process’s  
thermodynamics by the two adsorbent systems.  
(
퐶 −퐶 ).푉  
표 ꢀ  
=  
(4)  
(5)  
2
.3.7 Mechanistic and surface morphology studies  
The functional groups on the adsorbent surfaces were  
(퐶−퐶)  
푟 =  
표  
%
detected using Agilent Cary 630 Fourier transform infrared  
FTIR) spectrophotometer. The adsorbent sample was mixed  
(
with a spatula full of KBr in an agate mortar and ground to a  
fine powder using a pestle. The powder was pressed to form thin  
transparent pellets before the infrared spectrum of the adsorbent  
was taken. Equal loads of H and HP (0.2 g) were stirred in 50  
mL of equimolar solutions of lead ions (50 mg/L) for 30 min.  
They were filtered, washed with deionized water, and dried in a  
desiccator. The surface morphology of the adsorbents was  
examined with a scanning electron microscopy (SEM) model  
Phenom ProX by phenomWorld Eindhoven, The Netherlands.  
The samples were placed on a double adhesive in a sample stub  
and then coated with a sputter coater by Quorum Technologies  
Model Q150R, with 5 nm of gold. After that, they were taken to  
the chamber of the SEM machine, where they were viewed via  
Navcam. The brightness contrasting was automatically adjusted,  
and afterward, the morphologies of different magnification were  
store in a USB 2.0 flash drive (USB stick).  
where q  
adsorbent (mg/g), C  
(
(
time t, V is the volume of the solution (L) and m is the mass of  
adsorbent (g).  
e
is the quantity of metal adsorbed at equilibrium by the  
is the initial concentration of metal  
e
mg/L), C is the equilibrium concentration of the adsorptive  
mg/L) in solution, C is the concentration of the metal at  
o
t
2
.3.2 Effect of pH  
To determine the effect of pH on the adsorption of lead by  
the adsorbent, 100 mL of test solutions containing 100 mg/L of  
lead ions at different pH levels (2, 3, 4, and 5) were prepared by  
adjusting the pH to the desired value using 1 M HCl or 1 M  
NaOH before adding the adsorbent. The pH measurements were  
done using a Checker plus pH tester by HANNA. 0.2 g of  
adsorbent was mixed with the test solution at a given pH, and  
o
the mixture agitated for 30 min, at 30 C. The lead ion  
concentration in the solution after this period was then  
determined.  
3 Results and Discussion  
The multi-point BET plots for H and HP are shown in  
Figure 2. The data from these plots showed that H possessed a  
2
.3.3 Effect of adsorbent dose  
The effect of the dose of adsorbent on the adsorption of lead  
2
very large surface area (528.74 m /g), which increased to 721.54  
2
ions was studied using different biomass concentrations (0.1,  
m /g after modification. This is about 36 % increase in the  
0
.2, 0.4, 0.8, 1.2, and 1.4 g) in 100 mL of 100 mg/L of metal  
surface area of this biomass after it was modified with alkali.  
The t-plots for H and HP are shown in Figure 3. The data from  
ions at initial pH of 5 [22]. After mixing a given weight of  
adsorbent with the metal solution, the mixture was agitated for  
these plots showed that both H and HP were highly  
microporous.  
o
3
0 min, at 30 C and the concentration of lead ions in the  
solution determined.  
Table 1: Physical and chemical characteristics of H and HP  
Adsorbent  
BET surface area (m /g)  
Pore volume (cm /g)  
Micropore volume (cm /g)  
H
HP  
2
.3.4 Adsorption kinetics  
Adsorption kinetic experiments were conducted to assess the  
2
528.74 721.54  
3
0.325  
0.477  
2.80  
0.62  
3.80  
3.11  
6.17  
0.94  
0.21  
74.22  
20.17  
5.61  
0.368  
0.642  
3.00  
0.55  
2.25  
0.26  
6.11  
0.93  
0.20  
96.83  
3.41  
0.24  
rate of Pb(II) ion uptake onto H and HP. The effect of contact  
time on the adsorption of lead ions by the adsorbent was  
determined at 3 min intervals for 30 min, with an initial lead ion  
concentration of 100 mg/L and solution initial pH of 5 at 30 C.  
0
in each flask and agitated. The flasks were withdrawn at the  
specified time intervals and the lead ion’s concentration at a  
given time determined.  
3
Pore diameter (Å)  
P
S
o
.2 g of adsorbent was mixed with 100 mL of the metal solution  
Mineral element analysis (wt %) K  
Ca  
Fe  
Zn  
Cellulose  
Lignocellulose composition (%) Hemicellulose  
Lignin  
2
.3.5 Equilibrium and isotherm studies  
The impact of the initial concentration of lead ions (100, 50,  
2
5, and 12.5 mg/L) at initial solution pH of 5, on the adsorption  
of this metal by the adsorbents, were studied. 0.2 g of a given  
adsorbent was mixed with 100 mL solution of the metal ion at a  
97  
Journal of Environmental Treatment Techniques  
2021 Volume 9, Issue 1, Pages: 95-104  
3
.1 Effect of pH  
The pH of an aqueous solution is an essential factor in the  
adsorption of metal ions. The effect of pH on the adsorption of  
Pb ions onto H and HP was studied at pH 25 because  
precipitation of Pb ions from the solution started at pH 5.5 [24,  
25]. The adsorbents’ Pb ion removal efficiency directly  
correlated with initial solution pH (Figure 5). The removal  
efficiency of H at pH 2 was 13.4 %, which increased to 27.1 %  
after modification. This increase continued from 25.1 % to 37.7  
%
at pH 3, 33.9 % to 61.7 % at pH 4, and 52.9 % to 73.9 % at  
pH 5. At lower pH values, H and HP’s surface potential were  
largely positively charged due to their protonation by the high  
+ +  
3
concentration of H and H O ions in the solution [26].  
(
a)  
(
a)  
(
b)  
Figure 2: Multi-point BET plots for (a) H (b) HP at 77 K  
3
The micropore volume of H (0.447 cm /g) increased to  
3
0
.642 cm /g, which is about a 44 % increase in porosity due to  
modification. The X-ray fluorescence scans of H and HP are  
shown in Figure 4. The main mineral elements in the biomass  
were calcium, sulphur, potassium, iron, phosphorus, and zinc.  
Pretreatment had minimal effect on the mineral composition of  
the biomass (Table 1). The gravimetric analysis of maize husk  
(
b)  
showed that it contained 74.22  
% cellulose, 20.17 %  
hemicelluloses, and 5.61 % lignin. After alkali pretreatment, the  
cellulose yield increased to 96.83 %, with a drop in the  
hemicelluloses and lignin content to 3.41 % and 0.24 %,  
respectively. A large amount of hemicellulose and lignin in the  
maize husk lignocellulose dissolved in the alkali pretreatment  
solution and washed off with deionized water during the rinsing  
of the biomass. These observations are in agreement with  
findings from previous studies [23].  
Figure 3: t-plots for (a) H (b) HP at 77 K  
98  
Journal of Environmental Treatment Techniques  
2021 Volume 9, Issue 1, Pages: 95-104  
3
.3 Adsorption kinetics  
Adsorption kinetic experiments were conducted to determine  
(
a)  
the adsorption rate of Pb ions onto H and HP, and the results are  
shown in Figure 7.  
1
1
10  
00  
Energy (eV)  
b)  
9
8
7
6
5
4
3
0
0
0
0
0
0
0
(
H
HP  
Energy (eV)  
Figure 4: X-ray fluorescence scan of (a) H (b) HP  
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0.1  
0.2  
0.4  
0.8  
1.2  
1.4  
Dose (g)  
Figure 6: Effect of adsorbent dose on Pb ion adsorption by H and HP  
o
o
initial pH = 5; C = 100 mg/L; T = 30 C)  
(
9
8
7
6
5
0
0
0
0
0
H
HP  
H
HP  
2
3
4
5
pH  
40  
30  
Figure 5: Effect of pH on Pb ion adsorption by H and HP (C  
o
= 100  
o
mg/L; m = 2 g/L; T = 30 C)  
2
0
These charges reduce the attraction of Pb ions in the solution  
by the surfaces of H and HP. In contrast, an increase in pH  
created more negatively charged surfaces on H and HP, which  
facilitated Pb ions’ uptake from the solution. These results are in  
agreement with findings from previous studies [27].  
2
4
6
8
10  
12  
14  
16  
18  
20  
t (min)  
Figure 7: Rate of adsorption of Pb ions by H and HP (initial pH = 5; C  
= 100 mg/L; m = 2 g/L; T = 30 C)  
o
o
3
.2 Effect of adsorbent dose  
e t t  
The plots of In (q  q ) vs t and t/q vs t for pseudo-first-  
The effect of different amounts of H and HP on the removal  
order and pseudo-second-order kinetic models are shown in  
Figure 8. The mathematical and kinetic parameters from the  
models are summarized in Table 4. These results showed that  
the data were well fitted in the two kinetic models with the  
pseudo-first-order model, giving a better fitting as observed in  
of Pb ions from aqueous solution is shown in Figure 6. The  
results demonstrated higher removal efficiencies for Pb ions  
with an increase in the two adsorbents’ doses. HP showed a  
marked increase in its removal efficiency as its load increased in  
the solution due to the enhanced surface area of this adsorbent  
2
the linear regression correlation coefficient values (R ) for H and  
[
28,29]. The removal efficiencies of H and HP were almost the  
e
HP. Also, the experimental adsorption capacity (q ) of the two  
same at 0.2 g and 0.1 g, 0.4 and 0.2 g, and 0.8 g and 0.4 g doses  
respectively, indication a 50 % enhancement in efficiency for  
HP over H. These results showed that pretreatment of H with  
NaOH could have increased the microporous structure of the  
biomass thereby creating more adsorption sites for Pb ion  
uptake. The solubilization of lignin in the alkali pretreatment  
solution can bring about this adsorption site exposure on the  
biomass [13].  
biomass materials were very similar to those obtained from the  
models (qe(cal)). In other words, the adsorption of lead ions onto  
H and HP is a pseudo-first-order kinetic process. Also, the  
pseudo-first-order rate constant for HP was 1.6 times the value  
obtained for H, suggesting a faster uptake of lead ions by HP.  
99  
Journal of Environmental Treatment Techniques  
2021 Volume 9, Issue 1, Pages: 95-104  
Table 2: Literature reports on biomass based adsorbents for Pb ion  
uptake from aqueous solution  
Table 5: Adsorption isotherm models used in this study  
Initial  
Isotherm Linearized forms of  
Parameters  
solution  
References  
concentration (mg/g)  
mg/L)  
q
e
model  
equations  
Biomass  
Modifier  
pH  
C (mg/L): equilibrium concentration  
e
(
of Pb ions  
Sawdust  
Formaldehyde  
in Sulfuric  
qm (mg/g): maximum adsorption  
capacity of the adsorbent  
K (L/mg): Langmuir constant  
qe (mg/g): adsorption capacity at  
equilibrium  
(
Pinus  
5.1  
1 10  
9.78 [30]  
Cꢅ  
=
1
Cꢅ  
+
K q  
qꢇ  
sylvestris) acid  
Langmuir  
Isotherm  
qꢅ  
Formaldehyde  
in sulfuric  
acid  
Walnut  
sawdust  
Not  
stated  
10 200  
20 100  
5 20  
4.48 [31]  
133.60 [32]  
C (mg/L): initial concentration of Pb  
o
Cucumber  
peel  
ions  
-
5
5
ꢃ−  
g−ꢃ): relative  
K
F
(mg  
L
Imperata  
cylindrica  
leaf powder  
Bean husk  
Cashew nut  
shell  
Maize husk  
Maize husk Oxalic acid  
Maize husk  
Freundlichln q = In K + In C  
Sodium  
hydroxide  
F
 adsorption capacity of the adsorbent  
n: adsorption intensity  
13.50 [33]  
12.66 [34]  
Isotherm  
K
E
(L/mg): Elovich equilibrium  
-
7
Not  
stated  
2
2
5
10 100  
10 50  
ꢌ  
constant  
Elovich  
Isotherm  
ln = In K qꢇ  
E
ꢌ  
ꢎ  
2
qm: Elovich maximum adsorption  
Sulfuric acid  
-
8.3  
[35]  
capacity  
(mg/g): sorption capacity  
50 300  
50 300  
12.5 100  
7.38 [36]  
9.33 [36]  
31.43 This study  
q
s
ln q = ln q ꢁ βε β: activity coefficient related to mean  
-
sorption energy  
DR  
Isotherm  
Sodium  
hydroxide  
1
Maize husk  
5
12.5 100  
41.22 This study  
 (J/mol): Polanyi potential  
휀 = RT ln(1 +  
)
-1 -1  
푒  
R (Jmol K ): 8.314  
T (K): 303  
Table 3: Adsorption kinetic models used in this study  
Linearized forms of  
equations  
Kinetic model  
Parameters  
3
.0  
t (min): the contact time  
H
HP  
-
1
2.8  
2.6  
2.4  
2.2  
k
1
(min ): the pseudo-first  
order rate constant.  
t
q (mg/g): adsorption  
capacity at time t.  
(mg/g): adsorption  
capacity at equilibrium.  
(g/mg.min): the pseudo-  
second order rate constant.  
Pseudo-first-order  
model  
푙푛(푞 ꢁ 푞 )  
= 푙푛푞 ꢁ 푘 ꢄ  
q
e
2
.0  
.8  
1
1
1
+ ꢄ  
k
2
Pseudo-second-  
order model  
=
1.6  
2
  푞  
푒  
2
1.4  
1.2  
1.0  
0.8  
Table 4: Kinetic parameters obtained from the models  
Pseudo-first order Pseudo-second order  
Biomass  
q
e
a
2
2
R
k
1
q
e(cal)  
R
k
2
q
e(cal)  
0.6  
2
4
6
8
10  
12  
H
HP  
31.43 0.9966 0.14  
41.22 0.8553 0.23  
31.03 0.9894 3.11 E-3 40.08  
40.65 0.8539 6.30 E-3 47.62  
t (min)  
3
.4 Equilibrium and isotherm studies  
The adsorption equilibrium data obtained in this study were  
0.50  
evaluated using the Langmuir, Freundlich, Elovich, and  
H
HP  
0
.45  
.40  
Dubinin-Radushkevich (DR) isotherm models [37] (Table 5).  
2
A comparison of the R values from these models indicated that  
0
the equilibrium data for H and HP best fitted the Freundlich  
isotherm model (Figures 9 and 10). The Freundlich isotherm  
parameters for H and HP are shown in Table 6. The value of n in  
this model indicates the degree of non-linearity between solution  
concentration and adsorption as follows: if n = 1, the adsorption  
is linear; if n > 1, the adsorption is a favorable physical process,  
and if n < 1, the adsorption is by a chemical process [38].  
Therefore, the uptake of lead ions by H and HP occurred on a  
heterogeneous surface by multilayer adsorption, and the number  
of ions adsorbed increased infinitely with an increase in  
concentration [39].  
0.35  
0
.30  
.25  
0
0.20  
0
.15  
.10  
b
0
2
4
6
8
10  
12  
t (min)  
100  
Journal of Environmental Treatment Techniques  
2021 Volume 9, Issue 1, Pages: 95-104  
Figure 8: (a) Pseudo first-order (b) Pseudo second-order kinetic plots for  
o
∆ꢒꢓ  
∆Sꢓ  
In K = ꢁ  + ꢔ  
H and HP (initial pH = 5; C  
o
= 100 mg/L; m = 2 g/L; T = 30 C)  
(6)  
where R is the gas constant (8.3145 J/mol K), T is the absolute  
3.5  
3.0  
2.5  
2.0  
1.5  
temperature (K), and ΔH and ΔS were calculated from the slope  
and intercept of the linear plots of In K  
c
and (Figure 11). The  
c
equilibrium constant (K ) was calculated from the equation:  
Aꢌ  
K = ꢌ  
(7)  
where C and C are the equilibrium concentrations of lead ions  
(
mg/L) on the adsorbent and in the solution, respectively.  
3.0  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
In Ce  
2.5  
Figure 9: Freundlich isotherm plot for H (initial pH = 5; C  
o
= 12.5-100  
2
1
1
0
0
.0  
.5  
.0  
.5  
.0  
100 mg/L  
50 mg/L  
o
mg/L; m = 2 g/L; T = 30 C)  
25 mg/L  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
a
0.00310  
0.00315  
0.00320  
0.00325  
0.00330  
1
/T (K)  
4.0  
3.5  
3.0  
2.5  
2.0  
-
2
-1  
0
1
2
3
1
5
00 mg/L  
0 mg/L  
In Ce  
25 mg/L  
o
Figure 10: Freundlich isotherm plot for HP (initial pH = 5; C = 12.5-  
o
00 mg/L; m = 2 g/L; T = 30 C)  
1
Table 6: Freundlich isotherm parameters for H and HP  
2
1.5  
Adsorbent  
R
n
K
F
H
0.9866  
0.9666  
1.19  
3.57  
1.51  
9.38  
b
1.0  
0.00310  
0.00315  
0.00320  
0.00325  
0.00330  
HP  
1
/T (K)  
The n values for H and HP were 1.19 and 3.57, respectively,  
indicating that lead adsorption on these adsorbents was by a  
favorable physical process, with the surface of HP favoring this  
process more than that of H.  
Figure 11: Van’t Hoff plot for (a) H (b) HP (initial pH = 5; C  
mg/L; m = 2 g/L; T = 30-50 C)  
The ΔG at 303 K was obtained from the relationship:  
o
= 25-100  
(8)  
o
G = ∆H  T∆ꢘꢗ  
3
.5 Thermodynamic studies  
The thermodynamic parameters, including enthalpy change  
ΔH), entropy change (ΔS), and free energy change (ΔG), were  
considered to determine if the adsorptive process occurred  
spontaneously. The values of ΔH and ΔS were obtained from the  
Van’t Hoff equation:  
The positive values of ΔH at the studied initial metal ion  
(
concentrations (Table 7) indicated that the adsorption process  
was endothermic. Lead ions were adsorbed more efficiently onto  
H and HP at higher temperatures. Similar results have been  
reported in other studies [40]. The adsorption of lead ions by H  
101  
Journal of Environmental Treatment Techniques  
2021 Volume 9, Issue 1, Pages: 95-104  
was more favored by an increase in temperature than HP. The  
free energy of adsorption (ΔG) of lead ions onto H and HP were  
negative and indicated that the process was spontaneous, and  
spontaneity increased with an increase in temperature. The  
positive values of entropy change showed an increase in  
randomness at the solid/solution interface on H and HP during  
lead ion adsorption.  
polymer shifted to 3488.43 cm-1 in H and disappeared  
completely in HP. This indicated that the complexation  
mechanism was involved in the adsorption of lead ions by H and  
HP. The modification exposed the OH functional groups on HP  
for better interaction with lead ions. The disappearance of the –  
OH band on HP pointed to a greater metal ion adsorption  
intensity by this adsorbent, which resulted in the shielding of the  
hydroxyl functional group on it by the adsorbed lead.  
Table 7: Thermodynamic parameters for the adsorption of lead ions onto  
H and HP  
3
.7 Surface morphology analysis  
To predict the change in the adsorbents’ surface morphology  
2
Adsorbent C  
o
(mg/L)  
R
ΔG  
ΔH  
(kJ/mol)  
66.99  
60.04  
73.14  
49.79  
40.84  
61.73  
ΔS (kJ/mol K)  
(
kJ/mol)  
0.58  
1.47  
2.00  
3.24  
4.00  
5.54  
after modification, the SEM images (Figure 13) of H and HP  
were taken at ×8000 magnification. The image obtained for H  
showed a smooth and continuous crystalline surface, which can  
be attributed to a high presence of lignin on the biomass. After  
modification, numerous hollow cylindrical shaped pores  
appeared on HP, which increased its heterogeneity substantially.  
The highly porous nature of HP would result in an increased  
surface area, which would create more potential sites for the  
adsorption of lead ions when compared to H. This indicated that  
the treatment of H with sodium hydroxide was highly effective  
in the delignification of the biomass.  
1
00  
0.9735  
0.9670  
0.9620  
0.9734  
0.9755  
0.9491  
0.223  
0.203  
0.248  
0.175  
0.148  
0.222  
H
50  
2
5
1
00  
HP  
50  
2
5
3
.6 Mechanistic studies  
The superimposed infrared spectra of H and HP in their  
natural forms and after lead ion adsorption are shown in Figure  
12.  
Figure 13: Surface morphology of (A) H (B) HP (C) H after Pb  
adsorption (D) HP after Pb adsorption  
The images of H and HP after the adsorption of lead ions  
were observed at ×7000 magnification. The surface of H became  
slightly rough due to the deposition of metal ions on it. The  
heterogeneity of the surface of HP reduced due to the occupation  
of the smaller pore spaces by the metal ions. The larger pores  
remained significant because they had more room for the uptake  
of metal ions. These observations were clear indications that  
pretreatment of maize husk’s surface using sodium hydroxide  
was very efficient in increasing its capacity for the uptake of  
lead ions from aqueous solution.  
Figure 12: FTIR spectra of (A) H and HP (B) H before and after  
adsorption (C) HP before and after adsorption  
The major bands observed on H were a strong band at  
-1  
396.56 cm corresponding to an aromatic OH, a strong band  
-1  
1
at 1624.55 cm corresponding to a C=O stretch, a strong and  
broadband at 3495.59 cm-1 corresponding to an OH from a  
polymer and a weak band at 2883.62 cm-1 corresponding to a C-  
H stretch from alkanes [41]. The absorption peaks initially  
observed on H became stronger and more prominent on HP,  
with better separation of peaks at the multiplet bands. After  
adsorption of lead ions, the absorption band of the OH in the  
102  
Journal of Environmental Treatment Techniques  
2021 Volume 9, Issue 1, Pages: 95-104  
4
5
.
.
S. Babel and T.A. Kurniawan, Low-cost adsorbents for heavy  
metals uptake from contaminated water: a review, J. Hazard. Mater.,  
4
Conclusion  
The effect of pretreatment of maize husk on its lead ion  
9
7 (2003) 219-243.  
adsorption potentials was studied. The data from the multi-point  
BET plots and t-plots for natural maize husk (H) and its  
pretreated form (HP) showed that pretreatment significantly  
J. Wang and C. Chen, Biosorption of heavy metals by  
Saccharomyces cerevisiae: a review, Biotechnol Adv., 24(5) (2006)  
427-51.  
2
increased the surface area of the biomass from 528.74 m /g to  
6. R. Foroutan, R. Mohammadi, S. Farjadfard, H. Esmaeili, M. Saberi,  
S. Sahebi, S. Dobaradaran and B. Ramavandi, Characteristics and  
performance of Cd, Ni and Pb bio-adsorption using Callinectes  
sapidus biomass: real wastewater treatment, Environ. Sci. Pollut.  
Res., 26(7) (2019) 6336-6347.  
2
3
3
7
21.54 m /g, and its porosity from 0.447 cm /g to 0.642 cm /g.  
The lead ion removal efficiency of H and HP increased with an  
increase in pH (2  5) and adsorbent dose (1 g/L  12 g/L). The  
maximum lead ion removal efficiency of H and HP was 62.85 %  
and 82.84 %, respectively, which was attained in 15 min at 30  
7
.
N.K. Mondal, A. Samanta, P. Roy and B. Das, Optimization study  
of adsorption parameters for removal of Cr(VI) using Magnolia leaf  
biomass by response surface methodology, Sustain. Water Resour.  
Manag., 5 (2019) 1627-1639.  
o
C. The experimental equilibrium adsorption capacity of the  
biomass was 31.43 mg/g, which increased to 41.22 mg/g after  
modification. The pseudo-first-order kinetic model better  
explained the rate of lead ion removal from aqueous solution by  
both adsorbent types. The Freundlich isotherm model was  
followed in the uptake of lead ions onto the modified and  
unmodified adsorbent forms, indicating that adsorption of lead  
occurred on a heterogeneous surface by multilayer adsorption.  
The positive ΔH values and negative ΔG values for the  
adsorption process at different initial lead ion concentrations (25  
8. F. de Freitas, L.D. Battirola, R. Arruda and L.R.T. de Andrade,  
Assessment of the Cu(II) and Pb(II) removal efficiency of aqueous  
solutions by dry biomass Aguape: kinetic of adsorption, Environ.  
Monit. Assess., 191(12) (2019) 751.  
9
.
V.O. Njoku, A.A. Ayuk, E.N. Ejike, E.E. Oguzie, C.E. Duru and  
O.S. Bello, Cocoa pod husk as a low cost biosorbent for the removal  
of Pb(II) and Cu(II) from aqueous solutions, Aust. J. Basic Appl.  
Sci., 5(8) (2011) 101-110.  
10. Y. Ozudogru and M.J. Merdivan, Adsorption of U(VI) and Th(IV)  
100 mg/L) and 2 g/L adsorbent dose showed that lead  
ions from aqueous solutions by pretreatment with Cystoseira  
adsorption onto the biomass types was an endothermic process  
and occurred spontaneously. Complexation was the observed  
mechanism followed during the uptake of lead ions onto maize  
husk and its pretreated form.  
barbata,  
J.  
Radioanal.  
Nucl.  
Chem.,  
(2019).  
doi.org/10.1007/s10967-019-06943-6  
1
1. W. Qu, D. He, Y. Guo, T. Yining and S. Ren-Jie,  
Characterization of modified Alternanthera philoxeroides by  
diethylenetriamine and its application in the adsorption of  
copper(II) ions in aqueous solution, Environ. Sci. Pollut. Res.,  
26(21) (2019) 21189-21200.  
2. C.E. Duru, I.A. Duru, C.E. Ogbonna, M.C. Enedoh and P. Emele,  
Adsorption of copper ions from aqueous solution onto natural and  
pretreated maize husk: adsorption efficiency and kinetic studies, J.  
Chem. Soc. Nigeria, 44 (5) (2019) 798-803.  
3. G.T. Asere, V.C. Stevens and D.G. Laing, Use of (modified) natural  
adsorbents for arsenic remediation: a review, Sci. Total Environ.,  
676 (2019) 706-720.  
14. W.S. Wan Ngah and M.A.K.M. Hanafiah, Removal of heavy metal  
ions from wastewater by chemically modified plant wastes as  
adsorbents: a review, Bioresour. Technol., 99 (2008) 3935-3948.  
Funding  
1
1
This research is funded by the Tertiary Education Trust  
Fund of the Nigerian Government under grant number  
TETFUND/DESS/UNI/OWERRI/2015/RP/VOL.I.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(
avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
submitted work is original and has not been published elsewhere  
in any language.  
1
5. C.E. Duru, Mineral and phytochemical evaluation of Zea mays  
husk, Scientific African, 7 (2020) e00224.  
6. C.E. Duru and I.A. Duru, Studies of sorbent efficiencies of maize  
parts in Fe(II) removal from aqueous solutions, Int. Lett. Chem.  
Phys. Astron., 72 (2017) 1-8.  
1
1
1
7. C.E. Duru and I.A. Duru, Adsorption capacity of maize biomass  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
parts in the remediation of Cu2+ ion polluted water, WNOFNS, 12  
(2017) 51-62.  
2
+
8. C.E. Duru, I.A. Duru, F.C. Ibe and M.C. Enedoh, Profiling of Zn  
ion sorption in modeled aqueous solutions by different parts of  
maize biomass, IOSR JAC, 10(31) (2017) 70-75.  
C.E. Duru, M.A. Nnabuchi and I.A. Duru, Adsorption of Cu onto maize  
husk lignocelluloses in single and binary Cu-Zn solution systems:  
equilibrium, isotherm, kinetic, thermodynamic and mechanistic  
studies, Egypt. J. Chem., 62(7) (2019) 1695-1705.  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
References  
19. R. Datta, Acitogenic fermentation of lignocelluloses - acid yield and  
conversion of components, Biotechnol. Bioeng., 23(9) (1981) 2167-  
1
.
M.S. Abdel-Raouf and A.R.M. Abdul-Raheim, Removal of heavy  
metals from industrial waste water by biomass-based materials: a  
review, J. Pollu. Eff. Cont., 5(1) (2017) 180.  
2
170.  
2
0. P. Mahyati, A.R. Patong, M.N. Djide and D.P. Taba,  
Biodegradation of lignin from corn cob by using a mixture of  
Phanerochaete Chrysosporium, Lentinus Edodes and Pleurotus  
Ostreatus, Int. J. Sci. Technol. Res., 2(11) (2013) 79-82.  
2
.
C.E. Duru, M.C. Enedoh and I.A. Duru, Physicochemical  
assessment of borehole water in a reclaimed section of Nekede  
mechanic village, Imo State, Nigeria, Chemistry Africa, 2(4) (2019)  
2
1. S. Rajoriya, A. Haquiqi, B. Chauhan, G. Tyagi, A.S. Pundir and  
A.K. Jain, Influence of adsorption process parameters on the  
removal of hexavalent chromium (Cr(VI)) from wastewater: a  
review, J. Environ. Treat. Tech., 8(2) (2020) 597-603.  
6
89-698.  
3
.
A.L. Wani, A. Ara and A.J. Usmani, Lead toxicity: a  
review, Interdiscip. Toxicol., 8(2) (2015) 55-64.  
103  
Journal of Environmental Treatment Techniques  
2021 Volume 9, Issue 1, Pages: 95-104  
2
2. H. Shuhaida and K.G. Soh, Effect of sodium hydroxide pretreatment  
on rice straw composition, Ind. J. Sci. Technol., 9(21) (2016) 1-9.  
3. G. Blazque, M. Carlero, F. Hernainz, G. Tenorio and M.A. Martin-  
Lara, Equilibrium biosorption of lead(II) from aqueous solutions by  
solid waste from olive-oil production, Chem. Eng. J., 160 (2010)  
2
6
15-622.  
2
2
2
4. A. Mlayah and S. Jellali, Study of continuous lead removal from  
aqueous solutions by marble wastes: efficiencies and mechanisms,  
Int. J. Environ. Sci. Technol., 12 (2015) 2965-1978.  
5. K.M. Nguyen, B.Q. Nguyen, H.T. Nguyen and H.T.H. Nguyen,  
Adsorption of arsenic and heavy metals from solutions by  
unmodified iron-ore sludge, Appl. Sci., 9 (2019) 619-633.  
6. B.S. Zadeh, H. Esmaeili, R. Foroutan, S.M. Mousavi and S.A.  
2
+
Hashemi, Removal of Cd from aqueous solution using Eucalyptus  
sawdust as a bio-adsorbent: kinetic and equilibrium studies, J.  
Environ. Treat. Tech., 8(1) (2020) 112-118.  
2
2
2
7. S. Rajoriya, A. Haquiqi, B. Chauhan, G. Tyagi, A.S. Pundir, A.K.  
Jain and D. Agarwal, Adsorption Studies on the removal of  
hexavalent chromium (Cr (VI)) from aqueous solution using black  
gram husk, J. Environ. Treat. Tech., 2020 8(3) (2020) 1144-1150.  
8. N. Arumugam, S. Chelliapan, S.T. Thirugnana and A.B. Jasni,  
Optimisation of heavy metals uptake from leachate using red  
seaweed Gracilaria changii, J. Environ. Treat. Tech., 8(3) (2020)  
1
089-1092.  
9. V.C. Taty-Costodes, H. Fauduet, C. Porte and A. Delacroix,  
Removal of Cd(II) and Pb(II) ions from aqueous solutions by  
adsorption onto sawdust of Pinus sylvestris, J. Hazard. Mater., 105  
(2003) 121-142.  
3
3
3
0. Y. Bulut and Z. Tez, Removal of heavy metal ions by modified  
sawdust of walnut, Fresenius Environ. Bull., 12 (2003) 1499-1504.  
1. M. Basu, A.K. Guha and L. Ray, Adsorption of lead on cucumber  
peel, J. Clean. Prod., 151 (2017) 603-615.  
2. M.A.K. Hanafiah, S.C. Ibrahim and M.Z.A. Yahya, Equilibrium  
adsorption study of lead ions onto sodium hydroxide modified  
Lalang (Imperata cylindrica) leaf powder, J. Appl. Sci. Res., 2  
(2006) 1169-1174.  
3
3
3
3
3. C.T. Onwordi, C.C. Uche, A.E. Ameh and L.F. Petrik, Comparative  
study of the adsorption capacity of lead (II) ions onto bean husk and  
fish scale from aqueous solution, J. Water Reuse Desal., 9(3) (2019)  
2
49-262.  
4. K. Nuithitikul, R. Phromrak and W. Saengngoen, Utilization of  
chemically treated cashew-nut shell as potential adsorbent for  
removal of Pb(II) ions from aqueous solution, Sci. Rep., 10(1)  
(2020) 3343.  
5. A.I. Adeogun, M.A. Idowu, A.E. Ofudje, S.O. Kareem and S.A.  
Ahmed, Comparative biosorption of Mn(II) and Pb(II) ions on raw  
and oxalic acid modified maize husk: kinetic, thermodynamic and  
isothermal studies, Appl. Water Sci., 3 (2013) 167-179.  
6. H.N. Tran, S. You and H.A. Hosseini-Bandegharaei Chao, Mistakes  
and inconsistencies regarding adsorption of contaminants from  
aqueous solutions: a critical review, Water Res., 120 (2017) 88-116.  
7. A.N.A. El-henday, Surface and adsorptive properties of carbons  
prepared from biomass, Appl. Surf. Sci., 252 (2005) 287-295.  
8. H. Freundlich, About adsorption in solutions, Z. Phys. Chem.,  
3
3
3
5
7U(1) (1907) 385-470.  
9. F. Gorzin and M.M.B.R. Abadi, Adsorption of Cr(VI) from aqueous  
solution by adsorbent prepared from paper mill sludge: Kinetics and  
thermodynamics studies, Adsorp. Sci. Technol., 36(1-2) (2017) 149-  
1
69.  
4
0. B.D. Mistry, Handbook of spectroscopic data Chemistry, Oxford  
Book Company, 2009.  
104