Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 192-195  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/9(1)195  
Synchrotron based X-ray fluorescence for trace  
elemental analysis of industrial sludge  
1
2
2
1
Vijay Kumar Garg , Arun Lal Srivastav , Manoj Kumar Tiwari , Ajay Sharma * and  
Varinder Singh Kanwar1  
1
Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh-174103, India  
2
BL-16, Indus-2, Raja Ramana Centre for Advanced Technology, Indore, India  
Received: 12/08/2020  
Accepted: 01/11/2020  
Published: 20/03/2021  
Abstract  
This research article presents the application of the synchrotron-based X-ray fluorescence (XRF) technique for the resolution of trace  
elemental accumulation in industrial sludge/waste. The X-ray fluorescence using synchrotron radiation presents an expeditious  
exposition of a wide scale of elements (Sodium to Uranium) together with an ingenuous sample preparation procedure. The present X-  
ray fluorescence studies carried out for the paper and toothpaste industry sludge at synchrotron source (Beam Line -16), Indus-2, Raja  
Ramanna Centre for Advanced Technology, Indore, India. The XRF results show very low traces of heavy metals present in paper and  
toothpaste industry sludge and therefore recommend for safe and efficient reuse.  
Keywords: Elemental analysis; synchrotron radiation; industrial sludge and X-ray fluorescence  
1
sample is atomized because of the primary incident X-ray or  
1
Introduction  
gamma ray photons. The energy and intensity of the  
characteristic X-rays in the XRF spectra indicate the element  
present and its concentration in the sample. XRF is an  
important technique of elemental analysis for distinct kind of  
samples and it is an extremely responsive technique, which  
follows the principle of interaction of atoms with radiation [4-  
In developing countries, industrial sectors pose significant  
environmental and occupational health risks to its populations.  
As industries are booming and large quantities of industrial  
waste and are being dumped illegally either in open or in the  
nearby riverbeds. World’s urban societies are increasing  
rapidly than the global population, especially in the developing  
countries. Urban growth has created momentous alteration to  
the ecological system by increasing waste accumulation  
through human activities. The techniques which are capable to  
detect the level of metallic elements to ppb limits in a variety  
of environmental, biological as well as geological samples are;  
6]. The principal asset of the X-ray fluorescence method over  
other elemental analysis techniques is its non-destructiveness,  
simultaneous multi-elemental capability, ingenuous sample  
preparation and high resolution for trace elements. Daly et al.  
[7] used EDXRF for elemental analysis dairy processing sludge  
before its application in the agricultural fields and concluded  
that the XRF method is provides rapid and accurate results.  
Mashaly et al. [8] characterized the granite sludge and cement  
on the basis of X-ray fluorescence and studied the feasibility of  
granite sludge in cement replacement. Elemental composition  
of solid residues of sewerage sludge and biomass waste were  
examined using XRF [9]. Zhang et al. [10] evaluated the textile  
dyeing sludge and cattle manure using XRF and their findings  
provided an insight for better reutilization of waste.  
Synchrotron-based XRF can be used to know both quantitative  
and qualitative multi-elemental concentration in very less time  
Atomic absorption spectroscopy (AAS)  
Inductively coupled plasma-atomic emission spectrometry  
(
ICP-AES) or inductively coupled plasma-mass  
spectrometry (ICP-MS) or Inductively coupled plasma-  
optical emission spectrometry (ICP-OES).  
Energy-dispersive X-ray Fluorescence Spectrometry (ED-  
XRF) or Wavelength dispersive XRF (WD-XRF)  
Neutron activation analysis (NAA)  
Particle-induced X-ray emission (PIXE)  
For the last 20 years, the energy dispersive X-ray fluorescence  
EDXRF) has advanced diligently. The developments made in  
(
[11] and it is a non-destructive, most precise and accurate  
semiconductors, digital signal processing and data simulation  
have broadened the usability of the XRF method for  
economical, small-size spectrometers for trace elemental  
analysis in various types of samples [1-3]. X-ray fluorescence  
being a non-destructive analytical method has its own  
merits. XRF analysis provides the composition of a sample by  
quantifying the characteristic X-rays evolved from a sample,  
excited by radiations (Fig. 1). In X-ray fluorescence, individual  
atoms are excited by incident photons, which in turn emit  
secondary photons called as characteristic X-rays (Fig. 1a). In  
XRF spectroscopy, emission of characteristic X-rays of the  
method of trace element determination of all types of samples.  
Furthermore, it can simultaneously determine many elements  
present in a single sample [12]. In India, this facility is available  
at Raja Ramanna Centre for Advanced Technology (RRCAT),  
Indore. Presently this technique is being used for the trace  
elemental analysis of sludge samples collected from the paper  
and toothpaste industry, which is abundant in the study area.  
*
Corresponding author: Ajay Sharma, Chitkara University School of Engineering and Technology, Chitkara University, Himachal  
Pradesh-174103, India. E-mail: coe@chitkarauniversity.edu.in  
192  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 192-195  
synchrotron beam for a short duration of time. In the present  
measurements, the sludge pellet samples were exposed to BL-  
2
Material and method  
Presently, paper and toothpaste industry sludge samples  
1
6 at 18 keV energy. Sludge pellets with thickness of 0.2003  
are gathered from an industrial area. The collected powder  
samples are pelletized by uniformly mixing with cellulose to  
make 13 mm diameter self-supporting targets with a smooth  
surface of equal density (Fig. 2). These targets are evaluated at  
the synchrotron radiation beam line-16 at RRCAT, which is  
specially designed and commissioned by Department of  
Atomic Energy (DAE) for XRF/TXRF (Fig. 3a). Owing to the  
numerous advantages of a synchrotron-based XRF technique  
the experimental set-up on the Indus-2 synchrotron light  
source is equipped with a microfocus XRF beamline (BL-16).  
The beamline (BL-16) is capable of radiating monochromatic,  
intense radiations in the energy span 4 to 20 keV. At the  
experimental hutch, the beamline presents both micro-focused  
and collimated beam modes for versatile applications. The  
energy dispersive X-ray fluorescence (EDXRF) and total  
reflection x-ray fluorescence (TXRF) analysis of samples up  
to ppb (parts per billion) levels can be made by exposing the  
2
gm/cm were prepared for experimentation purposes. The  
experimental set-up (Fig. 3b) consists of a sample holder  
inclined at 45° to the incident radiations in the reclining  
divergence arrangement. The characteristic X-rays emitted  
from the sludge samples were detected by a Peltier cooled  
Vortex solid-state Silicon drift detector (SII Nano, USA) for  
500 seconds. The detector with an energy resolution of 138 eV  
at 5.9 keV (Mn Kα) X-rays was mounted at 90° to the incident  
beam. The detector was lying approximately 60 mm away  
from the sample surface (middle of the beam footmark). To  
escalate the flux and to focus the beam size a double crystal  
monochromator and a 200-micrometer slit was pressed into  
the hutch, the same helped in optimizing beam strength and  
mitigating the background scattering.  
(a)  
(b)  
Fig. 1 (a) The mechanism of X-ray fluorescence and (b) the typical XRF spectrum  
Fig. 2: Sludge powder and Pellet samples for XRF study  
(
a)  
(b)  
Fig. 3: (a) Schematic layout of the experimental set-up (b) Actual photograph of the hutch  
193  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 192-195  
(
a)  
(b)  
Fig. 4: Fitted fluorescent characteristic X-ray spectra for (a) paper sludge (b) toothpaste sludge  
Table 1: Elemental concentration (in ppm) for paper sludge and toothpaste sludge alongwith 7% experimental uncertainty  
Sr. No.  
Element  
Paper sludge (ppm)  
Toothpaste sludge (ppm)  
1
2
3
4
5
6
7
8
9
Ca  
Ti  
937683 (± 65638)  
88 (± 6)  
801358 (± 56095)  
181 (± 13)  
Mn  
Fe  
Cu  
Zn  
Br  
Sr  
374 (± 26)  
8063 (± 564)  
280 (± 20)  
724 (± 51)  
217 (± 15)  
51827 (± 3628)  
270 (± 19)  
47 (± 3)  
763 (± 53)  
12089 (± 846)  
168 (± 12)  
810 (± 57)  
260 (± 18)  
182591 (± 12781)  
1396 (± 98)  
23 (± 2)  
Y
1
0
Pb  
multielemental analysis of industrial waste/sludge. The  
technique exhibits both qualitative and quantitative information  
of trace elements present in sample in precise and accurate  
manner. The present XRF results predict the dominating  
concentration of Calcium in industrial sludge/waste and  
therefore, can be an alternate in replacing soil in brick  
manufacturing industry.  
3
Results and discussion  
Typically recorded characteristic X-ray spectra at 18 keV  
is shown in Fig. 4. In order to control the characteristic  
parameters of the beam line such as spectral range and  
minimum detection limit etc. the sludge samples have been  
exposed to radiations for 500 seconds. Fig. 4 shows fitted XRF  
spectra, where solid black and red lines are the experimental  
and fitted data respectively, whereas green line represents a  
good estimation of the spectral background.  
Acknowledgment  
The XRF results (table 1) show the dominating proportion  
of Calcium in both sludge samples. The concentration of  
titanium, manganese, iron and zinc is more in toothpaste sludge  
as compared to paper sludge, whereas the concentration  
dominates for copper and lead in paper industry sludge. The  
comparative high concentration of titanium, manganese in  
toothpaste sludge may be due to the small percentage of their  
compounds as an ingredient in the toothpaste. The present  
results (table 1) show very low traces of heavy metals and a  
dominating concentration of calcium in both the sludge  
samples, which recommend these industrial sludge(s) for safe  
and efficient recycling. Similar findings have already been  
reported for elemental analysis dairy processing sludge before  
its application in the agricultural fields using EDXRF [7].  
Therefore, XRF based multi-elemental, qualitative and  
quantitative valuable information can be considered while  
recommending any sludge for reuse. The researchers are also  
working on the techniques of safe disposal of these wastes  
through various techniques like phytoremediation [13].  
The authors would like to thank the Department of  
Environment, Science & Technology, Himachal Pradesh-India  
for financial support in this study vide grant no. Env. S & T  
(F)/5-1/2018-8886. The authors also acknowledge the technical  
assistance and guidance extended by RRCAT Indore-India to  
carry on this study.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(
avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements  
that submitted work is original and has not been published  
elsewhere in any language.  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
4
Conclusion  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
As is evident from the present study, synchrotron-based X-  
ray fluorescence is a significant technique for non-destructive  
194  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 192-195  
References  
1.  
Bamford S, Wegrzynek D, Chinea-Cano E, Markowicz A.  
Application of X-ray fluorescence techniques for the determination  
of hazardous and essential trace elements in environmental and  
biological materials. Nukleonika. 2004;49(3):87-95.  
2
.
.
Schramm R, Heckel J. Fast analysis of traces and major elements  
with ED (P) XRF using polarized X-rays: TURBOQUANT. Le  
Journal de Physique IV. 1998 Oct 1;8(PR5):Pr5-335.  
Chen L, Liao Y, Ma X, Niu Y. Effect of co-combusted sludge in  
waste incinerator on heavy metals chemical speciation and  
environmental risk of horizontal flue ash. Waste Management.  
3
2
020 Feb 1;102:645-54.  
4
.
.
Török SB, Lábár J, Schmeling M, Van Grieken RE. X-ray  
spectrometry. Analytical Chemistry. 1998 Jun 15;70(12):495-518.  
Anjos MJ, Lopes RT, Jesus EF, Assis JT, Cesareo R, Barroso RC,  
Barradas CA. Elemental concentration analysis in soil  
contaminated with recyclable urban garbage by tube-excited  
energy-dispersive X-ray fluorescence. Radiation Physics and  
Chemistry. 2002 Nov 1;65(4-5):495-500.  
5
6
.
.
Soodan RK, Pakade YB, Nagpal A, Katnoria JK. Analytical  
techniques for estimation of heavy metals in soil ecosystem: a  
tabulated review. Talanta. 2014 Jul 1;125:405-10.  
Daly K, Fenton O, Ashekuzzaman SM, Fenelon A.  
Characterisation of dairy processing sludge using energy  
dispersive X-ray fluorescence spectroscopy. Process Safety and  
Environmental Protection. 2019 Jul 1;127:206-10.  
7
8
.
.
Mashaly AO, Shalaby BN, Rashwan MA. Performance of mortar  
and concrete incorporating granite sludge as cement replacement.  
Construction and Building Materials. 2018 Apr 30;169:800-18.  
Chen J, He Y, Liu J, Liu C, Xie W, Kuo J, Zhang X, Li S, Liang J,  
Sun S, Buyukada M. The mixture of sewage sludge and biomass  
waste as solid biofuels: Process characteristic and environmental  
implication. Renewable Energy. 2019 Aug 1;139:707-17.  
9
1
0. Zhang J, Sun G, Liu J, Evrendilek F, Buyukada M. Co-combustion  
of textile dyeing sludge with cattle manure: Assessment of thermal  
behavior, gaseous products, and ash characteristics. Journal of  
Cleaner Production. 2020 Apr 20;253:119950.  
1
1
1
1. Ene A, Bosneaga A, Georgescu L. Determination of heavy metals  
in soils using XRF technique. Rom. Journ. Phys. 2010 Jan 1;55(7-  
8
):815-20.  
2. Radtke M, Reinholz U, Gebhard R. Synchrotron Radiation–  
Induced X‐Ray Fluorescence (SRXRF) Analyses Of The Bernstorf  
Gold. Archaeometry. 2017 Oct;59(5):891-9.  
3. Kanwar VS, Sharma A, Srivastav AL, Rani L. Phytoremediation  
of toxic metals present in soil and water environment: a critical  
review. Environmental Science and Pollution Research. 2020 Sep  
2
7:1-26.  
195