Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 196-202  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/9(1)202  
The Anti-Cancer Property of Mumie as Natural  
Product on Human Cervical Cancer Cell Line  
(
HeLa)  
Azin Tavassoli, Malihezaman Monsefi  
Biology Department, College of Sciences, Shiraz University, Shiraz, Iran  
Received: 15/08/2020  
Accepted: 25/10/2020  
Published: 20/06/2021  
Abstract  
Mumie is a natural component found in some mountains, such as the Himalayas, as well as in some mountainous of Iran. It contains  
of humic and phenolic compounds that have antioxidant and anti-cancer properties. Therefore, in this study, anti-cancer and antioxidant  
properties of mumie were examined on Human Cervical Cancer Cell Line (HeLa). HeLa cells and normal fibroblasts (NIH) were cultured  
in DMEM/F12 with mumie at concentrations of 0, 100, 200, 300, 400, 500 and 1000 µg/ml for 24 and 48 h. The bioviability of these  
cells were evaluated using MTT assay. Chromatin condensation and apoptosis of these cells were examined using acridine orange and  
2 2  
aniline blue staining respectively. Antioxidant property of mumie on NIH cells was evaluated by 10 mM H O and neutral red test. MTT  
assay revealed bioviability of HeLa cells decreased but chromatin condensation increased in concentration of 100 μg/ml mumie treated  
culture. Apoptosis of the HeLa cells were observed in 100 μg/ml mumie treated culture. Mumie did not affect the bioviability, chromatin  
condensation and apoptosis of NIH cells but 500 and 1000 μg/ml concentrations were toxic and induced cell death. The cell cultures in  
different concentrations of mumie after 24and 48 h showed the similar results. NIH cells bioviability increased in 500 and 1000 μg/ml  
concentrations of co-culture of H O and mumie that confirmed the antioxidant property. It concluded that even low concentrations of  
2 2  
mumie could destroy HeLa cells without any side effect on normal cells. Therefore, it can be used for cervical cancer treatment but  
further research is needed.  
Keywords: Apoptosis, Cervical cancer, Mumie  
1
the natural substances that individuals have utilized as a healing  
1
Introduction  
compound for a long time. It is a brownish, rocky exudate  
found in some mountainous areas. The chemical content of the  
mumie is mostly originated from organic humic substances and  
plants (7). Other mumie components include phenolic  
compounds and some minerals such as fatty acids, albumin,  
sterols, amino acids, 3,4 benzocoumarin, aromatic carboxylic  
acids and polyphenols. The efficacy of mumie has been proven  
for treating diseases such as anemia, diabetes, high cholesterol,  
joint and bone disorders, and chronic pain (8). Also, it mainly  
used to treat people with weakness, inflammation, bone  
fracture, bleeding and wound healing (9). Based on (10)  
administration of 200600 mg/dose of shilajit in mice results in  
morphological and phagocytotic changes in peritoneal  
macrophages. (11) showed that shilajit can diminish gastric  
ulcer record by increasing mucus barrier. They also proved that  
shilajit has anti-inflammatory effect in carrageenan-induced  
acute pedal edema, granuloma pouch and adjuvant-induced  
arthritis in rats.  
Cancer burden rise to 18.1 million infection and 9.6 million  
deaths worldwide in 2018 (1). Common cancer treatments such  
as chemotherapy, radiation therapy, and hormone therapy have  
numerous side effects. Some typical side effects of  
chemotherapy are vomiting, constipation or diarrhea and hair  
loss (2). In recent years, increasing the new cases of cervical  
cancer among all types of cancer has become a major medical  
concern. However, the treatment of intermittent cervical cancer  
disease remains ineffectual to a great extent (3). Consequently,  
researchers are attempting to find more effective remedies to  
cure this type of cancer. One of the approaches that has been  
taken into consideration of numerous scientists today, is the  
utilization of natural compounds like herbs. The use of herbs in  
disease treatment has existed for thousands of years in many  
parts of the world. Plants are one of the most important natural  
sources for cancer treatment because many of them are capable  
to inducing apoptosis pathway and blocked in cancer cells (4).  
Approximately, 50ꢀ% of the modern anticancer drugs have  
been originated from the natural products. Therefore, the use of  
natural products in the development of new drugs has been a  
great interest for researchers. For the cancer treatment,  
Traditional Chinese Medicine has been used natural products  
as adjuvant therapy in conjunction with chemotherapy and  
radiotherapy for inhibiting the toxic effects of the treatments,  
as well as improving overall efficacy (5, 6). Mumie is one of  
There are many researches for healing effects of mumie in bone  
fracture. Also, some researcher has been reported anti-cancer  
property of mumie but we did not found its effect on cervical  
cancer. Considering the potency of mumie in curing all above  
mentioned medical complications, the aim of the present study  
was to investigate the anti-cancer properties of mumie on  
human cervical cancer cells (HeLa).  
Correspondence author: Monsefi Malihezaman, Prof. of Anatomy, Biology Department, College of Sciences, Shiraz University  
Shiraz-Iran. Tel: 0098-713-3167357, Fax: 0098-713-2280916, Email address: monsefi.g@gmail.com and  
monsefi@susc.ac.ir.  
196  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 196-202  
method score 1 to 4 represents light blue nuclei or normal cells,  
semi-dense nuclei, dens nuclei and dark blue nuclei or  
compressed cells respectively.  
2
Materials and methods  
1
.2 Extract preparation  
Black mumie were purchased from a commercial source in  
Kerman, Iran. Mumie were powdered and 0.01 g were solved  
in 12.5 ml culture media in a water bath for 10 min. Mumie  
extract were vortexed for 10 minutes and sterilized with 0.45  
µm syringe filter. The concentrations of 50, 100. 150, 200, 250,  
5.2 Acridine orange/Ethidium bromide (AO/EB) staining  
AO/EB staining is used for evaluation of nuclear  
5
morphology in apoptotic cells. The number of 5×10 cells were  
cultured in each well of 24 well plate and then were treated with  
different doses of mumie for 24 and 48 h. After the treatment  
period, HeLa and NIH cells were harvested and rinsed with  
PBS. The pellets were resuspended in AO/EB solution  
including 5 μl of AO (Merck, Germany) and 5 μl of EB  
3
00, 400, 500, 1000, 2000 and 3000 µg/ml were prepared. After  
pilot study, the concentrations of 100. 200, 300, 400, 500 and  
1
000 µg/ml were selected.  
2
.2 Cell culture  
(
SinaClon, Iran). After 10 min, the cells were observed using a  
The effects of mumie on the human cervical cancer cell line  
fluorescence microscope (Nikon Eclipse-E600) and  
photographs were taken at ×100 magnification using a digital  
camera (Nikon, Japan). Acridine orange is a vital dye and stains  
both live and dead cells. Ethidium bromide stains only cells that  
have lost membrane integrity. Live cells will appear uniformly  
green. Early apoptotic cells stain green and contain bright green  
dots in the nuclei as a consequence of chromatin condensation  
and nuclear fragmentation. Late apoptotic cells also incorporate  
ethidium bromide and therefore stain orange, but, in contrast to  
necrotic cells, the late apoptotic cells show condensed and often  
fragmented nuclei. Necrotic cells stain orange, but have a  
nuclear morphology resembling that of viable cells, with no  
condensed chromatin. The nuclei of 100 cells in each  
concentration of each well were scored based on the percentage  
of cells nuclei color as normal cells, early apoptotic cells and  
apoptotic cells.  
(
HeLa) were evaluated. A NIH cell line from the fibroblast of  
Swiss albino mouse embryo tissue as a normal cell was cultured  
with the same method to compare with the cancer cell line.  
These cells were cultured in DMEM/F12 (Dulbecco's Modified  
Eagle Medium, Gibco, USA) containing 10% fetal bovine  
serum (FBS, Gibco, USA) and 5% Penicillin/Streptomycin  
(
Gibco, USA). The cells were incubated at 37°C and 5% CO2.  
The media were changed every 2 days. After 80-90%  
confluency on the flask, the cells were passaged using Trypsin  
0
.25% (Bio-IDEA Iran).  
Cells number and viability were estimated using a  
haemocytometer under a light microscope after vital staining  
with trypan blue (Sigma-Aldrich, USA). Number of 1×10 cells  
were grown and maintained in 100 µl per each well of 96 well  
plate and 5×10 cells in 200 µl per each well of 24 well plate.  
4
5
2
All cells were incubated at 37°C with 5% CO for 24 and 48 h.  
Each concentration was repeated in 3 wells of well plate and in  
three well plates separately.  
6
.2 H  
To investigate the antioxidant properties of mumie, H  
was added to various concentrations of mumie. H causes  
cell death by oxidation stress and DNA damage. Antioxidant  
substances were reduced H activity in the cells. The number  
2 2  
O assay and Neutral red staining  
2 2  
O
2 2  
O
3
.2 MTT assay  
To evaluate the cytotoxicity effects of mumie on the HeLa  
cells, MTT colorimetric assay was applied. Briefly, 1104  
2 2  
O
5
of 5×10 cells were cultured in each well of 24 well plate and  
then were treated with different doses of mumie for 24 and 48  
h. Negative control wells contained culture media and in  
cells/well were transferred into 96-well culture plates  
containing 100 µl of DMEM/F12 and incubated for 24 h. NIH  
cell line was cultured with the same method to compare with  
the cancer cell lines. The culture medium was replaced by fresh  
medium containing mumie extract at concentration of 100. 200,  
2 2  
positive control wells H O were added to culture media.  
Neutral red staining was then performed to examine living and  
dead cells. Neutral red is a vital dye that across the  
mitochondria of living cells but cannot enter in the  
3
00, 400, 500 and 1000 µg/ml after 24 h and incubated for 24  
and 48 h. MTT solution was prepared at 1mg/ml in PBS and  
was filtered through a 0.2 µm syringe filter. Then MTT solution  
at 1:10 of total volume was added into each well. Cells were  
5
mitochondria of dead cells. The number of 5×10 NIH cells  
were cultured in each well of 24 well plate and then were  
treated with different doses of mumie for 24 and 48 h. 150 μl  
of neutral red dye was added to each well then fixed for 1 min  
by formal calcium. 200 µl of acid alcohol (3%  
hydrochloric acid in 95% ethanol) was added to each well for  
2
incubated for 4 hours at 37°C with 5% CO and complete  
humidity. After 4 hours, the MTT solution was removed and  
replaced with 200 µl of DMSO. The plate was further incubated  
for 2 hours at room temperature, and the optical density (OD)  
of the wells was determined using a plate reader at a test  
wavelength of 570 and 690 nm. Percent of the cell viability was  
calculated using the equation: (mean OD of treated cells/mean  
OD of control cells)  100.  
2
h. Finally, the supernatants were transferred to the new plate  
and the light absorbance was measured at a wavelength of 540  
nm by a microplate reader. Normal cells revealed higher color  
intensity than to dead cells.  
7
.2 Statistical analysis  
The data were analyzed with One-Way ANOVA using  
4
.2 Chromatin condensation assay  
The number of 5×10 cells were cultured in each well of 24  
5
SPSS version 17.5. The p<0.05 were considered as significant  
level. The Tukey post hoc test was used to obtain mean and  
standard deviation for each parameter and the graphs were  
plotted using EXCLE software.  
well plate and then were treated with different doses of mumie  
for 24 and 48 h. HeLa and NIH cells were fixed in 3%  
glutaraldehyde in PBS 0.2 M 30 min then stained with 5%  
aniline blue (Acros Organics, USA) in 4% acetic acid 10 min  
at pH=3.5. Each well was examined by invert microscope and  
their photographs were taken by digital camera (Nikon, Japan).  
Condensed chromatin was stained as dark blue. Intensity of  
reactions of 100 nuclei in each concentration of each well were  
scored based on the percentage of cells nuclei color. In this  
3
Results  
The human cervical cancer cell line (HeLa) of mumie  
treated cultures showed a significant reduction in cell viability  
in a concentration and time dependent manner.  
197  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 196-202  
Figure 1: The bio-viability effects of mumie on HeLa and NIH cells cultures at different concentrations after 24 and 48h using MTT assay.*Significant  
difference (P<0.05) compared to the control culture  
Figure 2: Chromatin condensation of HeLa and NIH cells at different concentrations of mumie treated culture after 24 and 48 h.  
*Significant difference (P<0.05) compared to the control culture  
The viability of Hela cells reduced from 100 µg/ml  
concentration significantly (P<0.05). IC50 of HeLa cells after  
cells viability decreased at 300 µg/ml concentration. IC50 of  
HeLa cells after 48 h of mumie treatment were 310.4 µg/ml.  
NIH cells had an IC50 of 998.8 and 807.8 µg/ml after 24 h and  
2
4 h of mumie treatment were 379.8, whereas after 48 h these  
198  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 196-202  
4
8 h cultures respectively. The results confirmed the sever  
cytotoxic effect of mumie on cervical cancer c:ell lines (Fig. 1).  
The aniline blue staining revealed the round and euchromatin  
nuclei of the HeLa cells in the control culture changed to the  
condensed and dark chromatin in the different concentrations  
of mumie treated cultures. Chromatin condensation appears in  
treated culture (Fig. 4). The apoptotic changes such yellowish  
nuclei and well condensed and small cytoplasm saw in 300  
μg/ml and higher concentration of mumie treated culture. In  
400 μg/ml concentration of mumie treated culture near 40%  
cells showed apoptotic appearance. HeLa cells of 1000 μg/ml  
concentration of mumie treatment showed yellow to orange  
color that referred to their apoptosis (Fig 5D). The results of  
apoptosis of HeLa cells of mumie treated cultures after 48 h  
were similar to it in 24 h culture (Fig. 4 and 5E-H). NIH cells  
mumie treated cultures after 24 h did not show any apoptotic  
changes except in the highest concentration of 1000 μg/ml (Fig.  
4) but after 48 h they revealed some early apoptotic changes in  
200 μg/ml concentration of mumie treatment (Fig. 4) but the  
more than 80% of NIH cells were normal (Fig. 4 and 5I-L).  
1
00 μg/ml of mumie concentration and nuclei compression saw  
at 300 μg/ml of mumie concentration treated culture (Fig 2).  
Higher HeLa cells of the control culture (almost 80%) showed  
dark green nuclei and spindle like cytoplasm using AO/EB  
staining (Figure 5A). HeLa cells in low concentration (100  
μg/ml) of mumie treated culture showed the early apoptotic  
changes such as light green nuclei and round and compressed  
cytoplasm (Fig. 5B). The population of early pre-apoptotic  
cells increased in 200 μg/ml and higher concentration of mumie  
A
B
C
D
E
F
G
H
I
Figure 3 The effects of mumie on HeLa and NIH cells cultures at different concentrations of control, 300 and 1000 µg/ml respectively. (A-C) showed  
HeLa cells cultured after 24 h, (D-F) showed HeLa cell cultures after 48 h. (G and H) showed NIH cell cultures after 24 h and (I) after 48h. Aniline blue  
staining.  
199  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 196-202  
Figure 4: apoptosis of HeLa and NIH cells at different concentrations of mumei treated culture after 24 and 48 h.*Significant difference (P<0.05)  
compared to the control culture  
A
E
I
B
F
J
C
G
K
D
H
L
Figure 5: The effects of mumei on HeLa and NIH cells cultures at different concentrations of control, 200, 400 and 1000 µg/ml respectively. (A-D)  
showed HeLa cells cultured after 24 h, (E-H) showed HeLa cell cultures after 48 h. (I-K) showed NIH cell cultures after 24 h and (L) after 48h. Acridine  
orang/Ethidium bromide staining.  
200  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 196-202  
an effective substance for inhibiting proliferation in cancer  
cells such as Hep3B, HT29 and PC3. It upregulates the mRNA  
levels of apoptotic genes of PC3 cells (18). Large population of  
HeLa cells showed either condensed chromatin after aniline  
blue staining or apoptotic signs after Ao/Eb staining (Figures  
1
-4). Mumie has induced chromatin condensation and  
apoptosis in all concentration of HeLa treated culture in both  
4 and 48 h. Apoptosis and chromatin condensation was  
2
increased with increasing concentrations of mumie. Chromatin  
condensation referred to compaction and hyperchromic nuclei  
of HeLa cells before they died. During cell death, chromatin  
undergoes the changes from a heterogeneous, genetically active  
network to an inert, highly condensed form. According to our  
results, different condensation of mumie did not show any side  
effects on NIH nuclei except for the highest dose of 1000 µg/ml  
concentration that proved toxic, leaving the highest possible  
number of cells dead. Humic acid (the major component of  
mumie) induced apoptosis in human premyelocytic leukemia  
HL-60 cells and showed loss of cell viability, chromatin  
condensation, and internucleosomal DNA fragmentation of  
these cells. Furthermore, caspase-3 and the specific proteolytic  
cleavage of poly (ADP-ribose) polymerase activated, and Bax  
protein levels increased while Bcl-2 reduced (14). (19) has been  
reported cytotoxic effects of humic acid on human breast  
cancer cells.  
polyphenols can repress the tumor generation and inhibit  
cancer cells growth. Tea decreases the danger of breast cancer  
(20). consumption of green tea and tomato resulted in reduction  
of prostate cancer in mouse models (21) (22). Our results  
revealed antioxidant activity of mumie on NIH cells.  
Mitochondria efficiency in generating ATP decrease in animals  
and in humans is associated with aging and oxidative stress.  
Figure 6: Anti-oxidant property of HeLa and NIH cells at different  
concentrations of mumie treated culture after 24 and 48 h. *Significant  
difference (P<0.05) compared to the control culture  
H O  
2 2  
assay of NIH cell mumie treated culture after 24h  
revealed anti-oxidant property of high concentrations (500 and  
000 μg/ml) of this natural material. The NIH cell viability  
1
increased 7 and 12 folds in concentration of 500 and 1000  
μg/ml mumie treated culture respectively when they compared  
to positive control culture but there is no anti-oxidant property  
in 48 h culture (Fig. 6).  
4
Discussion  
The cell proliferation measurement using MTT assay  
revealed mumie decreased HeLa cell viability even in low  
concentration and short time (24h) significantly (Figure 1).  
There was a 19, 31, 38, 43, 48 and 68 % (pꢁ<ꢁ0.05) reduction in  
the cell proliferation when the cells were incubated with 100,  
(
23)treated mice with 20 mg of a mixture of the 3-  
hydroxydibenzo-α-pyrone (3- OH-DBP) and 3,8-  
dihydroxydibenzo-α-pyrone [3,8-(OH)2-DBP isolated from  
shilajit. They revealed shilajit DBPs and their redox products  
upholds creation of ATP by hepatic mitochondria ((23)2009).  
Free radical scavenging activity of shilajit by 2,2-Diphenyl-1-  
picrylhydrazyl (DPPH) assay has been reported (Rege et al.,  
2
00, 300, 400, 500 and 1000 μg/ml concentration of mumie  
after 24h respectively. The mumie treated culture after 48 h  
showed 35, 45, 65 and 92% reduction in cell viability in 300,  
4
00, 500 and 1000 μg/ml concentration of mumie after 48h  
2
012). The effect of shilajit against some biogenic free radicals  
respectively. Mumie is not significant effects on NIH cell  
viability in similar condition to HeLa cells except in higher  
concentration of 1000 μg/ml mumie treated culture in both 24  
and 48 h that revealed 49 and 70 % reduction in viability  
respectively (Figure 1). MTT is a NADPH-dependent cellular  
oxidoreductase enzyme assay. It resulted insoluble purple  
color formazan, which represents the numbers of the viable  
cells (12). MTT assay indicates mumie anti-proliferative  
property in HeLa cells.  
Mumie is a natural compound that mostly contains of  
humic substances. Many people around the world have used  
Mumie (shilajit) as a treatment for a variety of ailments.  
Different doses of shilajit from 200 to 1000 mg/kg on rats  
showed it has no side effects on vital organs including heart,  
liver, and kidneys (13). Many studies have suggested that  
mumie have immunomodulatory and anti-inflammatory  
activity. These examinations recommend that the lytic potential  
of polymorphonuclear leukocytes could be improved by  
shilajit. Mumie contains fulvic acid and humic acid, which are  
responsible for its biochemical activities. Humic matter has  
been reported to be anti-cancer agent as it inhibited the cancer  
cell growth and induced the apoptosis (14). The cytotoxic  
properties of humic acid was accompanied the ROS production  
-•  
2
including (O ) , (•OH), and (NO) revealed it provided  
complete protection to methyl methacrylate (MMA) against  
hydroxyl radical-induced polymerization and acted as a  
reversible NO-captodative agent (24).  
5 Conclusion  
Mumie vastly used in southern Iran for a number of health  
complaints. In our study, Mumie had shown as potential anti-  
proliferative and apoptotic properties. The evidence from the  
present study suggests that Mumie may be a factor in diet that  
may lower the risk of cancer and may inhibit the tumor growth  
and proliferation, apoptosis and oxidative stress.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(
avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements  
that submitted work is original and has not been published  
elsewhere in any language.  
(
15) and NO synthesis (16).  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
Fulvic acid can increase extracellular anti-cancer mediators  
from RAW 264.7 cells that caused MCA-102 fibrosarcoma  
cells apoptosis. It also induced NF-ĸB activity which  
modulated the expression of NO and iNOS (17). Fulvic acid is  
201  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 196-202  
tea polyphenols. Proceedings of the National Academy of  
Sciences. 2001;98(18):10350-5.  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
2
2. Limpens J, van Weerden WM, Krꢂmer K, Pallapies D,  
Obermüller-Jevic UC, Schrꢃder FH. Re: Prostate Carcinogenesis  
in N-methyl-N-nitrosourea (NMU)Testosterone-Treated Rats  
Fed Tomato Powder, Lycopene, or Energy-Restricted Diets.  
Journal of the National Cancer Institute. 2004;96(7):554-.  
23. Bhattacharyya S, Pal D, Banerjee D. Shilajit dibenzopyrones:  
Mitochondria targeted antioxidants. Pharmacologyonline.  
2009;2:690-8.  
References  
1
.
Ferlay J, Colombet M, Soerjomataram I, Mathers C, Parkin D,  
Piñeros M, et al. Estimating the global cancer incidence and  
mortality in 2018: GLOBOCAN sources and methods.  
International journal of cancer. 2019;144(8):1941-53.  
2
.
Coates A, Abraham S, Kaye SB, Sowerbutts T, Frewin C, Fox R,  
et al. On the receiving endpatient perception of the side-effects  
of cancer chemotherapy. European Journal of Cancer and Clinical  
Oncology. 1983;19(2):203-8.  
24. Bhattacharya SK, Sen AP, Ghosal S. Effects of shilajit on biogenic  
free radicals. Phytotherapy Research. 1995;9(1):56-9.  
3
4
.
.
Waggoner  
SE.  
Cervical  
cancer.  
The  
Lancet.  
2
003;361(9376):2217-25.  
Safarzadeh E, Shotorbani SS, Baradaran B. Herbal medicine as  
inducers of apoptosis in cancer treatment. Advanced  
pharmaceutical bulletin. 2014;4(Suppl 1):421.  
5
6
7
.
.
.
Ling C-q, Wang L-n, Wang Y, Zhang Y-h, Yin Z-f, Wang M, et  
al. The roles of traditional Chinese medicine in gene therapy.  
Journal of integrative medicine. 2014;12(2):67-75.  
Ling C-q, Yue X-q, Ling C. Three advantages of using traditional  
Chinese medicine to prevent and treat tumor. Journal of integrative  
medicine. 2014;12(4):331-5.  
Agarwal SP, Khanna R, Karmarkar R, Anwer MK, Khar RK.  
Shilajit: a review. Phytotherapy Research: An International  
Journal Devoted to Pharmacological and Toxicological Evaluation  
of Natural Product Derivatives. 2007;21(5):401-5.  
8
9
1
1
1
.
.
Carrasco-Gallardo C, Guzmán L, Maccioni RB. Shilajit: a natural  
phytocomplex with potential procognitive activity. International  
Journal of Alzheimer’s disease. 2012;2012.  
Wilson E, Rajamanickam GV, Dubey GP, Klose P, Musial F, Saha  
FJ, et al. Review on shilajit used in traditional Indian medicine. J  
Ethnopharmacol. 2011;136(1):1-9.  
0. Ghosal S, Baumik S, Chattopadhyay S. Shilajit induced  
morphometric and functional changes in mouse peritoneal  
macrophages. Phytotherapy Research. 1995;9(3):194-8.  
1. Goel R, Banerjee R, Acharya S. Antiulcerogenic and  
antiinflammatory  
studies  
with  
shilajit.  
Journal  
of  
Ethnopharmacology. 1990;29(1):95-103.  
2. Berridge MV, Herst PM, Tan AS. Tetrazolium dyes as tools in cell  
biology: new insights into their cellular reduction. Biotechnol  
Annu Rev. 2005;11:127-52.  
1
1
3. Anisimov V, Shakirzyanova R. Application of Mumie in  
therapeutic practice. Kazan Med Zh. 1982;63:65-8.  
4. Yang H-L, Hseu Y-C, Hseu Y-T, Lu F-J, Lin E, Lai J-S. Humic  
acid induces apoptosis in human premyelocytic leukemia HL-60  
cells. Life sciences. 2004;75(15):1817-31.  
1
1
1
1
1
5. Ting H-C, Yen C-C, Chen W-K, Chang W-H, Chou M-C, Lu F-J.  
Humic acid enhances the cytotoxic effects of arsenic trioxide on  
human cervical cancer cells. Environ Toxicol Pharmacol.  
2
010;29(2):117-25.  
6. Hseu Y-C, Chang W-C, Hseu Y-T, Lee C-Y, Yech Y-J, Chen P-  
C, et al. Protection of oxidative damage by aqueous extract from  
Antrodia camphorata mycelia in normal human erythrocytes. Life  
Sci. 2002;71(4):469-82.  
7. Jayasooriya RGPT, Dilshara MG, Kang C-H, Lee S, Choi YH,  
Jeong YK, et al. Fulvic acid promotes extracellular anti-cancer  
mediators from RAW 264.7 cells, causing to cancer cell death in  
vitro. International Immunopharmacology. 2016;36:241-8.  
8. Aydin SK, Dalgic S, Karaman M, Kirlangic OF, Yildirim H.  
Effects of fulvic acid on different cancer cell lines.  
Multidisciplinary Digital Publishing Institute Proceedings.  
2
017;1(10):1031.  
9. Aykac A, Becer E, Okcanoğlu TB, Güvenir M, Süer K, Vatansever  
S, editors. The cytotoxic effects of humic acid on human breast  
cancer cells. Multidisciplinary digital publishing institute  
proceedings; 2018.  
2
2
0. Sun C-L, Yuan J-M, Koh W-P, Yu MC. Green tea, black tea and  
breast cancer risk: a meta-analysis of epidemiological studies.  
Carcinogenesis. 2006;27(7):1310-5.  
1. Gupta S, Hastak K, Ahmad N, Lewin JS, Mukhtar H. Inhibition of  
prostate carcinogenesis in TRAMP mice by oral infusion of green  
202