Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 139-147  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/9(1)147  
The Research on Food Waste Pre-Treatment  
Technology for Incineration in Malaysia  
1
,2*  
1
1
2
Ahmad Faizal Zamli  
, W.M.F. Wan Mahmood , W.A.W. Ghopa , M.T. Lim  
1
Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM),  
3600 UKM Bangi, Selangor, Malaysia  
4
2
Centre of Bioenergy & Sustainability, Renewable Energy & Green technology, Generation and Environment, TNB Research Sdn. Bhd., 43000 Kajang,  
Selangor, Malaysia  
Received: 09/08/2020  
Accepted: 21/10/2020  
Published: 20/03/2021  
Abstract  
Food waste and food loss are used to describe materials that are actually produced for consumption, but are discarded, lost, degraded or  
contaminated. Food waste (FW) is one of the main parts of municipal solid waste. Landfill is not preferable when compared with other types  
of waste handling method. It has been reported that the impact of landfill on climate change can be ten times higher than other waste handling  
methods. However, most FW end up in landfills. This paper reviewed the performance of several food waste pre-treatment technologies to  
convert FW into feedstock for incinerators/boilers in terms of electrical power generation purposes. The performance of food waste pre-  
treatment methods and their products were extensively discussed and compared in this paper in terms of calorific value, energy density, and  
compound reduction, which later directly corresponded with the energy, environmental, and economic factors for the sustainability of future  
renewable power generation.  
Keywords: Alternative fuel; bioenergy; deep drying; fuel pre-treatment; alternative fuel; waste to energy; energy densification;  
thermochemical process  
method (712). Landfills are one of the factors that contribute  
towards climate change due to greenhouse gas (GHG) emission.  
1
Introduction  
One third of the food produced globally are wasted, which  
1
It is reported that the impact of landfill on climate change can be  
ten times higher than other waste handling methods (13). In Asia,  
especially in Malaysia, FW is one of the main components of  
MSW. Most FW end up in landfills. Landfills cause gas emission  
problems of carbon dioxide (CO2) and methane (CH4) (14,15).  
Methane gas is produced through aerobic and anaerobic  
decomposition of solid waste and is a more potent GHG than  
carbon dioxide (7). Currently, FW recovery from MSW is  
relatively low. FW is one of the main parts of municipal solid  
waste (MSW). With its abundant source, the potential for this  
waste to become power generation feedstock in Malaysia is less  
explored. Most of the time, FW is not properly sorted and has high  
moisture content. These mixed wastes contaminate other MSW  
components and recyclable materials in them. Dewatering and  
drying are very important for achieving high energy recovery  
from FW and thermal drying is still a main method for FW drying  
amounts to about 1.3 billion tonnes per year (1). Food waste (FW)  
and food loss (FL) are used to describe materials that are actually  
produced for consumption, but are discarded, lost, degraded or  
contaminated (2). In 1981, according to the Food and Agriculture  
Organisation of the United Nations (FAO), the definition of FW  
includes the post-harvest period of food when in possession of  
final consumers (3). Gustavsson et al. came up with the same  
definition, however, they included the food supply chain (FSC)  
that contains a five-system boundary. It comprises agriculture  
production, post-harvest handling and storage, processing,  
distribution, and consumption (1). Malaysia approximately  
produces more than 15,000 tonnes of FW daily as reported in  
2
018 (4). In 2006, 93.5% of the municipal solid waste (MSW) in  
Malaysia were sent to landfills or open dumpsites and only 5.5%  
were recycled and 1% was composted (5). In the Waste  
Management Association of Malaysia (WMAM) Conference  
(
16). A correct pre-treatment method of FW can convert it into  
2
2
019 (6), the rate of recycling in Malaysia had drastically risen to  
8.06% in 2018. Nevertheless, in the same year, 13,830,014  
feedstock for incinerators or boilers. Incinerators are more  
reliable in volume and contribute towards mass reduction of waste  
in a shorter duration.  
tonnes of waste were generated in the country. The waste had  
doubled from 19,100 tonnes per day (5) or 6,971,500 tonnes per  
year in 2006. Several studies found that landfills are not  
preferable when compared with other types of waste handling  
*
Corresponding author: Ahmad Faizal Zamli, Centre of Bioenergy & Sustainability, Renewable Energy & Green technology, Generation and  
Environment, TNB Research Sdn. Bhd., 43000 Kajang, Selangor, Malaysia. E-mail: faizal.zamli@tnb.com.my  
139  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 139-147  
This paper reviews the performance of several FW pre-  
treatment technologies to convert FW into feedstock for  
incinerators/boilers. The performance of FW pre-treatment  
method and its products are discussed in this paper in terms of  
calorific value, energy density, compounds/elemental reduction  
and etc. for sustainable future renewable power generation.  
normally comprises high water content with a low heating value  
(23). Therefore, a pre-treatment method is needed to enhance the  
properties of FW so that it can become a good feedstock for  
incinerators. This unrecoverable source such as FW needs to be  
treated as soon as possible since most of the time, the food waste  
contains organic materials and will undergo the fermentation  
process after a short interval of time with exposure to the  
surrounding air.  
1
.1 Municipal Solid Waste, Food Waste, And Waste To Energy  
Incineration  
The MSW generation in Peninsular Malaysia has been  
FW can be alternatively recycled into pelletised poultry food  
or pet food. Besides, these food wastes can be converted into  
biogas; however, they require a low contamination condition and  
the process is very delicate. Most of the time, MSW mixed with  
FW cannot be recycled anymore due to high impurity, bad odour,  
and high cost of waste sorting, among others. The age of FW  
usually determines the method of waste to be treated. Sorted fresh  
FW can be used as feedstock for biogas reactors. Older versions  
of FW are more suitable to be processed into fertilisers. Normal  
incinerators can handle all types of FW. However, untreated or  
wet FW can become a problem with steam production in terms of  
heat and pressure fluctuation. These conditions happen because  
there is a big range of gap of calorific value (CV) in the untreated  
FW. Proper pre-treatment is needed for FW so that this source can  
become a game changer in power generation using MSW.  
A study in Singapore found that on average, the local  
residents generated 118 g of table FW and 91 g of kitchen FW per  
person for each meal. A total of 1,000 tonnes of FW with 16%  
impurities are generated daily in Singapore (23). In Malaysia, it  
is reported that in 2011 and 2018, 20,000 tonnes (24) and 37,890  
tonnes of solid waste were generated each day and almost half of  
them were FW. Abundant solid wastes generated every day  
require an expensive handling cost. In Malaysia, local authorities  
spend up to 60% of their annual budget on waste management.  
This costs Malaysia between RM110 to RM130 to collect and  
dispose one tonne of garbage [8] and this does not yet include the  
land requisition cost. Other research discovered that 70% of the  
total cost of waste management in Malaysia are spent on the  
collection of waste (25).  
increasing since 2001 (8). Kuala Lumpur is the top city in  
Malaysia that produces the most MSW and in 2013, it produced  
3
000 tonnes/day of MSW (8). Table 1 below shows the data of  
population and generation of MSW for some countries. It is  
observed that the amount of MSW generated daily is directly  
proportional with the population living in the town/country. MSW  
generation also depends on a person’s diet and the waste  
management system’s condition in these certain areas.  
Table 1: The trends of population and the MSW generation  
Town/  
Country  
MSW  
generated  
Country  
Malaysia  
Iran  
Population  
5,809,953  
700,000  
Region  
Kuala  
Lumpur  
South  
East  
Asia  
3
000  
tonnes/ day  
(8)  
0
.9 1.0  
Middle  
East  
Rasht (17)  
tonnes/day  
South  
East  
Asia  
Indonesia  
190,000  
tonnes/day  
Indonesia  
253,000,000  
(18)  
Table 2: MSW composition for some country  
Asian countries such as China and Singapore are operating  
waste-to-energy (WTE) incineration plants to convert their waste  
into energy. Gasification and anaerobic digestion plants use FW  
as feedstock; however, they are still under research and  
development. It has been reported that gasification and anaerobic  
digestion (AD) can give better performance in terms of larger  
environmental benefits (23) than incineration. The problems with  
these systems are that these technologies are not ready or robust  
for large-scale commercialization. The shutdown of an AD plant  
in Singapore in 2011 is an example of the system’s failure (26).  
On the other hand, incineration plants have increased rapidly  
in the last 50 years for both China and Singapore. The plan to  
increase incineration plants in both countries shows that the  
demand for this type of WTE is still huge (22,26). However, as  
reported in 2015, the waste separation in China was poorly  
executed and no pre-treatment was done to the waste prior to  
WTE incineration (22). With more wastes being generated each  
and every day, waste incineration is the best option to reduce  
waste. For example, incineration can reduce up to 70% of volume  
and 80% mass (27) of the waste. This technology has vastly  
improved over time (9). As mentioned before, it is not suitable to  
utilize raw FW as fuel in incinerators because of its high moisture  
content. Furthermore, the combustion of fuel with high moisture  
content such as FW is not economical. For example, the National  
Town/  
Country  
1
-
2
5
Malaysia  
7 -  
15  
14 -  
24  
4
5 - 48  
3
6
-
(8)(19)  
3
South Asia  
5
2
0
7
4
7
1
7
1
6
-
-
37  
17  
(
20)  
*
OECD  
32  
11  
(20)  
Latin  
America  
54  
16  
12  
4
2
-
12  
(
20)  
Estonia  
21)  
16.  
5
22.  
2
27.  
4
2
4
9
17.8 6.8  
23.9 1.3  
2.9  
1
4.8  
-
(
Wenzhou,  
China (22)  
4.7  
1.7  
*
Organization for Economic Cooperation and Development (OECD)  
The data from Table 2 above show the composition of MSW  
in several countries. In South Asia, for example, it is observed  
that FW is almost half of the MSW wastes generated. The range  
for FW in Malaysia’s MSW is from 40% to 50% (19). FW  
140  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 139-147  
Environment Agency (NEA) in Singapore has a plan to remove  
eatery FW from incineration to AD (23). This could be prevented  
if FW in the MSW is pre-treated using pellet technology before  
the incineration process. Pre-treatment of FW increases calorific  
value, making FW a more suitable fuel for incinerators. The pre-  
treatment can reduce unwanted chemicals as well as the moisture  
content. This would help to increase the incinerator system’s  
efficiency in the future.  
Table 3: MSW composition for some country  
No  
1
CV  
(MJ/kg)  
MC  
(%)  
Fuel type  
Pre-treatment  
Product  
Anglo  
Mafube  
bitumin  
ous coal  
Coal (11)  
Raw  
25.2  
NR  
26.15 &  
NR  
NR  
This study looks into the application of seven FW pre-  
2
FW (11)  
Torrefaction  
Biochar  
1
9.76  
treatment technologies and its product characteristic based on the  
literature study. The pre-treatment data from literature are  
analysed from the point of view of economic, environmental and  
energy which represented by energy density, unwanted  
compounds/ chemical reduction and calorific value. These data  
are ranked using the Weighted Factor Rating to select the best FW  
pre-treatment practices for the incineration application.  
(Raw)  
Landfill  
FW (28)  
17.45 to  
28.42  
3
4
Torrefaction  
Torrefaction  
Biochar  
Biochar  
NR  
1
2
9.5 to  
2.25 &  
NR  
FW(29)  
19.52  
Raw)  
8.44 to  
7
9
(
1
FW(starch  
y, rice)  
30)  
Steam  
Torrefaction  
27.44 &  
18.08  
(Raw)  
5
6
Biochar  
FW  
NR  
(
2
. Food Waste Pre-Treatment Technology for  
Air and  
Power Generation  
1
2.86 &  
9.95  
thermally  
assisted bio-  
drying  
FW can become better fuel for the incineration process with  
the correct pre-treatment method. Other problems related to FW  
incineration is its emission products are derived from chemical  
reaction that comes from the elements and compounds inside the  
FW. Unwanted elements and compounds from the FW can be  
minimized after the pre-treatment is done. The best FW pre-  
treatment method is the one that is capable of economically  
minimizing harmful emissions, increasing calorific value, and  
increasing energy density of the treated FW. This subtopic will  
discuss several FW pre-treatment technologies to convert FW into  
feedstock for thermochemical oxidizers such as incinerator, boiler  
furnace, and gasifier. Table 3 shows the food waste pre-treatment  
methods and their product calorific value.  
FW (16)  
FW (31)  
4.3 (Raw  
wet)  
63.2  
1
Pre-treat with  
enzyme &  
Hydro  
Hydro-  
char  
17.4 to  
26.9  
7
NR  
thermal  
carbonization  
(HTC)  
Restaurant  
FW (31)  
Hydro-  
char  
8
9
HTC  
15 to21.7  
NR  
Hydro-  
char  
FW  
Hydro-  
char  
17.85 to  
31.73  
17.85  
FW (32)  
HTC  
Raw  
NR  
NR  
NR  
1
0
1
FW (32)  
Restaurant  
FW (33)  
1
33.57  
2
.1 Torrefaction  
RDF (8-10%  
bio-waste)  
RDF from  
household &  
industrial  
1
2
MSW (34)  
Loose  
6 to15  
NR  
Literally, torrefaction is a French word that can be directly  
translated as roast or grill and it is likely used in the past as a  
process for coffee production. Torrefaction is a technology to  
convert FW into char by exposing FW to high temperature  
without the presence of oxygen. During torrefaction, moisture  
content is reduced as unbound moisture is eliminated through the  
evaporation process with increased temperature ranging from 200  
3 to  
35  
13  
MSW(35)  
FW  
NR  
12 to 21  
NR  
sources.  
Autoclave  
1
1
4
5
Fibre  
NR  
1
6.5  
Vegetables  
and leafy  
FW (36)  
(Raw) &  
°C to 300 °C (11). The normal biomass torrefaction temperature  
Autoclave  
Fibre  
Pellet  
NR  
is around 300 °C; higher thermal pre-treatment temperature is  
referred as pyrolysis (29). With an increase in temperature from  
2
11.7 to  
15.7  
(Treated)  
10 °C to 250 °C, light volatiles like CO₂, CO, and H₂O are  
emitted (38). These volatile matters are produced due to the  
degradation of hemicellulose and light aliphatic compounds from  
carbohydrates, which are more sensitive to temperature than other  
biomass components (11).  
Heavier volatiles are reduced as gases during the reduction  
of cellulose, protein, and carbohydrate compounds as temperature  
is increased to 300 °C. Methane, formic acid, acetic acid, and  
aromatic are some examples of the gases produced in this stage  
MSW  
woody  
biomass  
and agri-  
food waste  
16  
Pelletization  
19.5  
NR  
(37)  
NR – not reported  
Overall, torrefaction technology has big potential to pre-treat  
FW in the future since FW is generated every day and still  
increases. The main issues that need further consideration in the  
torrefaction of FW are to reduce the process time, reduce ash  
content, and increase the capacity with efficient use of energy. It  
is suggested that solar integration to the torrefier system can  
further increase the torrefier technology value.  
(
38,39). The carbon content and energy density in the biochar  
products are enhanced, which is directly linked with the increase  
in calorific value of the biochar products (11,28–30). It is  
observed that the treated FW’s lifespan increases as compared to  
raw FW.  
141  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 139-147  
2
.2 Autoclaving  
2.4 Hydrothermal carbonization  
Hydrothermal carbonization  
Autoclaving is a process that involves steam processing in a  
(HTC)  
is  
another  
vessel under the action of pressure (40). This process is done to  
FW to enhance the quality of the waste in terms of its potential to  
produce better gas from biogas or gasification processes or  
produce better fuel for combustion or other types of waste  
management process. Moreover, this process sterilizes FW that  
decontaminates other wastes and neutralizes odor compounds.  
Sterilization of FW also enhances the subsequent application of  
recovered wastes. Autoclaving of biodegradable and organic  
wastes such as FW and paper converts them into a fiber-like  
material (36).  
An example of autoclaving process is using 2–3 kg of sorted  
and dried FW in a 24 L tank filled with water and treated at a  
temperature range of 121 °C to 127 °C and 17 psi to 21 psi (1.17  
bar to 1.45 bar) in an autoclave reactor for 35 to 60 minutes (40).  
This study found that autoclaved FW had lower heavy metal  
content and was within the range of compost standard. Another  
study used injected steam and 45.9 kg of vegetables and leafy fruit  
waste from supermarkets in a 530 L rotary (7rpm) autoclaved  
reactor at temperatures of 408 K (134.9°C), 428 K (154.9°C), and  
thermochemical pre-treatment method that can be used to convert  
FW into fuel. HTC is able to reduce the unwanted high moisture  
content from FW. HTC is a pre-treatment process that is applied  
to organic waste at certain operating condition setting,  
temperature range of 200–350 °C, and process duration within 0.2  
to 120 h (41). The hydro-char products from this thermal pre-  
treatment method are with high carbon and energy content.  
Besides, a study reported the positive energy balances on the  
HTC pre-treatment of FW (33). The energy content may be  
influenced by the presence of packaging materials that are usually  
found together with the recovered solids. This study compared the  
HTC energy content of several samples from pure FW and the FW  
with packaging materials. The level of energy content of  
recovered solids from FW with packaging materials showed a  
reduction when compared with the pure FW. This may due to the  
low energetic retention, which is associated with the packaging  
materials (33).  
Previous research found that hydro-char is possibly  
generated by two major reaction pathways (42). One of the  
methods is the hydro-char formation via direct solid–solid  
conversion, which mainly follows the path of de-volatilization,  
intramolecular condensation, dehydration, and decarboxylation  
reaction. The next possible reaction is the conversion of  
intermediate products in the aqueous phase, which experiences  
hydrolysis, dehydration, decarboxylation, polymerization, and  
aromatization. HTC resulted in the reduction of volatile matters  
(43) and it is found that hydro-chars from the HTC process can  
increase the FW energy density and calorific value.  
4
38 K (164.9°C) and 3,6,7 kg/cm² or approximately around 3,6  
and 7 bar for 15 and 60 minutes (36). This autoclaved food waste  
showed reduced calorific value, volume reduction, and increase  
in product density.  
This study also discovered that the fiber content of  
hemicellulose, cellulose, and lignin fluctuated and it is suggested  
that the autoclaving process had altered the fiber in the samples.  
Further study is needed to increase the knowledge and fine tune  
the system to have a better perspective of the real potential in  
treating FW using the autoclaving method.  
2.5 Leaching technology  
Leaching is another type of pre-treatment method that has  
2
.3 Thermally assisted bio-drying  
been proven to treat biomass [44]. Leaching, which uses water,  
can be used to reduce some of the FW’s unwanted elements or  
compounds such as heavy metals, alkali metals, contamination  
during handling, for instance. The application of water-based pre-  
treatment for waste, especially FW, has high potential to be  
explored. The objective of the pre-treatment is to improve the FW  
calorific value and to reduce the unwanted compounds inside the  
FW in order to prevent the formation of slag, emission of toxic  
gases, and smell pollution.  
The FW leaching requires additional energy for the drying  
process. Leaching improves the FW properties such as lower  
moisture content, cleaner, less odor, and ability to be kept longer.  
The reduction of unwanted elements/compounds in the fuel may  
produce cleaner gas emission. The water-washing technology is  
known to assist the reduction of alkali metals in bio materials  
Bio-drying is a process to reduce excessive water in FW. FW  
consists of high biology waste materials that are suitable for the  
bio-drying process. Solid fuel with higher energy content is  
obtained at the end of the bio-drying process. Bio-drying method  
uses energy produced from microbial degradation in the FW to  
heat up water with the assistance of forced aeration (16). This  
condition increases water evaporation and stimulates microbial  
degradability. It is found that staged heating acclimation can  
obtain a superior thermophilic inoculum with high metabolic  
activity and microbial consortia. An extremely high metabolic  
activity is obtained during the thermally assisted bio-drying  
process, which is greatly higher than conventional bio-drying  
(
16).  
Jiao Ma et al. conducted thermally assisted bio-drying,  
which operated at temperatures of 50 °C to 60 °C using 1.2 to 2.2  
L containers filled with 500 to 1000 g FW in 5 days’ reaction time  
(
44,45). If these alkali metals are not reduced, they will  
devolatilize, nucleate, and condense to form hydroxide, chloride,  
and sulphate compounds (4649).  
(
16). At the high airflow rate and high temperature condition,  
water vapor is taken out of the matrix in a shorter time. The  
remaining solid waste can become refuse-derived fuel (RDF),  
which is a carbon neutral fuel and a renewable alternative source  
to fossil fuel. The time consumption for the whole process to  
complete can become a main issue in the thermally assisted bio-  
drying process. Further study can be done to reduce the process  
time, increase the calorific value content, and increase the  
capacity of the process. FW decomposition method that converts  
FW into fertilisers adapts an almost similar concept with  
thermally assisted bio-drying.  
Slag reduction is expected after the FW leaching pre-  
treatment method. The washing process during the leaching pre-  
treatment will readjust and modify the elemental composition  
inside the FW. Alternatively, slag can be controlled by mixing  
known fuel composition with other types of fuel or additive to  
balance the slag formation element/compound and this method is  
called fuel blending. Leaching can be used together with fuel  
blending to maximize the pre-treated product potential.  
142  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 139-147  
2
(
.6 Refuse-Derived Fuel (RDF) and Solid Recovered Fuel  
SRF)  
Fundamentally, RDF is similar to SRF; however, they differ  
suitable moisture content and binder inside the feedstock. During  
the palletization process, heat will be generated during the  
compaction process resulted from the friction between the metal  
roller, metal die, and feedstock. The fiber structure inside the  
organic waste such as lignin can act as a natural binder (52) during  
the pellet production process. Pellet mechanical durability and its  
quality depend on the densification pressure, temperature, lignin,  
and starch content (51).  
in terms of source, constituents, and pre-processing included  
during the process (9). RDF is composed of wastes generated  
from domestic and business sectors that primarily involve  
biodegradable and plastics, while SRF is a much more  
homogenous waste-derived fuel from MSW and commercial  
waste that has undergone an additional process to improve its  
quality and calorific value and meet the European CEN/TC 343  
standards (50). SRF is standardized as a type of fuel that is non-  
hazardous and complies with European standard EN15359. This  
solid fuel requires the producer to specify and classify SRF by  
specific net calorific value, grain size, chlorine, mercury, and  
heavy metal content (34) in the fuel. The fuel specification is  
mandatory for several other properties, including all heavy metal  
content as mentioned in the Industrial Emissions Directive (IED,  
UK) and a declaration of conformity has to be issued.  
Table 4: Classification of RDF by ASME 828:1981  
No RDF  
types  
Specification  
1
2
RDF 1 Raw waste or with minimal processing  
RDF 2 Waste processed into coarse particles with no  
separation metals in a way that 95% by weight  
of 6-inch square mesh sieve pass.  
Both fuels are suitable to become feedstock in cement  
furnaces and boilers for co-combustion (20). RDF and SRF use  
sieving and sorting in the beginning of the process to reduce the  
moisture content of MSW and to separate recyclable or directly  
burnt waste. RDF and SRF are generally a better option than  
traditional landfill in terms of environmental sustainability. A  
very large CV range is expected since it is the combination of  
many wastes and a fluctuation of CV and gas emission is  
understandable. It is suggested that organic and inorganic wastes  
are separated at the beginning of the process to understand their  
composition, gas emissions, and other combustion products.  
Better environmental impact can be achieved when the power  
production plant uses waste from RDF and SRF. The reduction of  
chemical pollutants inside the MSW by sorting or other processes  
can be integrated to produce better fuel for a cleaner environment.  
This would give more public acceptance of the realization of  
MSW as a reliable source for incineration power plants.  
3
RDF 3 Processed fuel derived from waste by  
separating the metals, glass, and other  
inorganic materials. The material in a way that  
a 2 inch square mesh sieve passes.  
4
5
RDF 4 Combustible waste components in powder  
form and 95% by weight of 0.035 inch square  
mesh sieve pass.  
RDF 5 Flammable  
waste  
extruded  
sections  
(compressed) in the form of pellets, cubes,  
briquettes, or similar forms. Due to the  
numerous advantages of portability and  
storage, and the ability to coordinate with a  
variety of combustion systems in developing  
RDF and SRF fuel are generally products of processing waste  
derived from MSW and FW. Processing of FW using SRF or RDF  
can improve the FW capability to become better fuel in the future.  
Table 4 below shows the classification of RDF by the American  
Society of Mechanical Engineers (ASME).  
6
7
RDF 6 The combustible waste in liquid form is  
processed  
RDF 7 The combustible waste gas is processed to  
form.  
2
.7 Palletization technology  
Palletization technology can be used to assist the  
improvement of FW calorific value. This technology can enhance  
the properties of FW and increase its value by removing unwanted  
moisture, reducing the porosity inside the FW, and significantly  
increasing the FW density. Palletization technology is known to  
assist the densification of biomass, which will also enhance  
mechanical durability (51). The moisture content reduction less  
than 10% is better because Malaysia has high FW moisture  
content. Uniform moisture content from FW pellet is needed so  
that the incinerator temperature and pressure do not fluctuate  
during steam production. Incineration normally requires low  
moisture content and high calorific value feedstock. The higher  
the energy density, the better with lesser maintenance needed  
inside the incinerator. Higher energy density from pelletized FW  
can contribute towards higher thermal heating for steam  
production. Pelletizing can become one part of several  
combinations of FW pre-treatment system. The pellet formed  
during high pressure compaction of FW into the metal die is  
applied inside the pellet machine. Good pellet formation requires  
3
Detailed Review of the Pre-Treatment  
Technologies  
This section will review, compare, and discuss all the pre-  
treatment methods stated in the earlier section. Table 5 below  
indicates the classification of food waste technology and energy  
density as well as their assumptions. Table 6 below shows the FW  
pre-treatment product characteristics and its rank in terms of  
calorific value, energy density and unwanted chemical reduction.  
Table 7 below shows the comparison of FW pretreatment method  
performance for incineration. From Table 7 above, all FW pre-  
treatment methods are rated in terms of their respective  
performance in the aspects of energy, economy, and environment.  
A scale from 1 to 5 is used to rate the pre-treatment methods. The  
setting for the score is as follows: scale 1 - poor performer, scale  
2 - below average, scale 3 - average, scale 4 - above average, and  
scale 5 - top performer. Three factors had been chosen to compare  
each pre-treatment method were calorific value, FW energy  
143  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 139-147  
densification, and compound/ chemical reduction. These  
characteristics are used to determine each pre-treatment  
performance and its quality to produce better fuel from FW.  
Table 6: The score matrix of treated FW  
Acidity, alkali  
metal, moisture,  
volatile, and  
heavy metal  
compounds  
reduction  
Calorific  
Value  
ED  
Score Rank  
(GJ/m³)  
(MJ/kg)  
Table 5: Energy Density Performance of FW Pre-Treatment  
Technologies  
CV  
1
2
<10  
0 to 3.09  
No change  
Reduction of 1  
item  
Technol  
ogies  
Density  
ED  
(GJ/m )  
10 to 14.99  
3.1 to 7.09  
Waste  
FW  
(MJ/k  
g)  
Assumption  
3
3
(kg/m )  
Reduction of 2  
items  
Reduction of 3  
items  
Reduction of 4  
or more items  
3
4
5
15 to 19.99  
20 to 24.99  
>25  
7.1 to 11.09  
11.1 to 15.09  
> 15.1  
Wet –  
5
Wet –  
4.30  
(16)  
Wet –  
2.15 to  
3.05  
00 (53)  
to 709  
54)  
Average  
energy  
density.  
Raw  
FW  
(
Organic  
waste  
Dry -  
00.00  
(55)  
Dry -  
25.90  
(56)  
Pellet  
-
Table 7 :Comparison of FW Pre-Treatment Method Performance  
accounts for  
over 80% of  
the total  
MSW.  
Average dry  
biomass  
8
Dry –  
20.72  
Pellet -  
29.85  
for Incineration  
Torrefac  
tion  
MSW  
Acidity, alkali  
metal,  
Pellet -  
1
092.70  
moisture,  
(56)  
27.32  
Pre-  
treatment  
method  
CV  
Energy)  
ED  
(Economy)  
volatile, and  
heavy metal  
compound  
reduction  
Total  
score  
density  
(
Average CV  
and density  
autoclaved  
FW  
Autocla  
ving  
97.17  
(36)  
13.7  
(36)  
1
.33  
(Environment)  
Based on  
calculation of  
13  
Torrefaction  
HTC  
5
5
3
5
5
5
3
3
2
4
12.77 to 709  
3
13  
10  
kg/m ,  
Thermal  
ly  
assisted  
bio-  
1
(
2
(
62.55  
57) to  
79.00  
54)  
60.62% (57)  
reduction on  
bulk density.  
More than  
Palletisation  
technology  
12.86  
(16)  
2.09 to  
3.59  
MSW  
MSW  
Leaching  
drying  
7
5% are FW  
technology  
3
1
4
8
8
8
and only  
considering  
bio-drying  
China MSW  
which having  
high food  
composition  
dry basis  
Based on  
data of pure  
FW bulk  
RDF and  
SRF  
3
2
2
1
3
5
Autoclaving  
7
00.00  
24.90  
(58)  
HTC  
17.43  
(58)  
Thermally  
assisted bio-  
drying  
2
1
1
1
2
1
5
3
Leachin  
g
technolo  
gy  
182.79  
(57)  
16.47  
(58)  
MSW  
RDF  
3.09  
3.75  
Baseline  
Raw FW  
density  
reduction by  
6
(Wet)  
0.62% (57).  
RDF  
and SRF  
250.00  
(34)  
15.00  
(34)  
Average data  
for RDF  
The average  
density and  
CV of  
palletisation  
of woody  
4 Results and discussion  
Table 7 shows the final result obtained for this study. Overall,  
torrefaction and HTC pre-treatment product result are the best in  
terms of their products performance. Both pre-treatment got 13  
total score. These pre-treatment methods are the best in terms of  
calorific value enhancement (> 25 MJ/kg) and FW energy  
densification (refer Tables 3, 5, 6, and 7). These pre-treatment  
methods undergo deep drying and thermochemical processes that  
reduce the volatile matters and moisture content inside the FW  
during the char formation, which also enhances the energy  
densification of FW. FW energy densification is a very important  
factor for economical transportation and storage costs because  
these fuel type will not biodegrade over time. Both methods  
Palletiza  
tion  
technolo  
gy  
1
(37)  
9.50  
1027.50  
(59)  
MSW  
20.04  
biomass and  
agri-FW  
144  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 139-147  
scored lower in terms of compound reduction. This was due to the  
process that involved the reduction of only two compounds  
public awareness of the FW valorization and its impact on the  
environment if FW is not properly managed. The other FW pre-  
treatment technologies can still challenge this study’s results with  
better upgrade and more development and optimize real potential  
of these technologies.  
(
volatile matter and moisture content). Volatiles released in  
biomass or organic waste commonly includes light hydrocarbons,  
carbon monoxide (CO), carbon dioxide (CO₂), hydrogen (H₂),  
moisture, and tar (60). Alkali metal-based compounds, such as  
from potassium (K) and sodium (Na), play a very important role  
during the slag formation (61) and should be reduced. A study  
reported that the total amount of potassium and sodium appear to  
be constant during the torrefaction of wood and this may due to  
the very small release of alkali metal during the process (62).  
Palletization scored the third highest in this study.  
Palletization of FW could only enhance the energy densification  
of FW to the maximum and was on par with HTC and torrefaction  
technology based on Tables 5, 6, and 7. The data also showed the  
effect of torrefied FW palletization and it was able to increase the  
energy density to 29.85 GJ/m³. This indicated the combination of  
these technologies is able to produce better fuel. Normal  
palletization process only focused on the moisture content  
reduction from FW; therefore, only one item was reduced using  
this method. Palletization calorific value was in the middle rank  
and was not so high as compared to HTC and torrefaction.  
5 Conclusions and suggestion  
Various pre-treatment methods can be used to enhance the  
properties of FW by significantly reducing smell pollutants and  
toxic gas emission, reducing slag formation, reducing FW acidity,  
converting FW into high energy density fuel, enhancing FW  
heating value, and decreasing its moisture content. Better  
understanding of the FW pre-treatment methods with the  
respective type of FW, FW source, and its composition is required  
to select the best pre-treatment method accordingly. Normally,  
heating value is one of the most important factors to consider for  
the selection of the most suitable pre-treatment method. However,  
the emission of fuel gas, slag formation, and energy density are  
also important for a sustainable and better future. Autoclaving and  
leaching scored higher for the reduction in chemicals/ items from  
FW, which is good for the environment. Nevertheless, leaching is  
much cheaper and easier than autoclave method.  
Leaching, autoclaving, and RDF and SRF pre-treatment  
technologies continued the list and shared 8 points. These  
technologies scored lower in calorific value assessment, which  
was in the range of 10 to 20 MJ/kg based on Table 3. On average,  
autoclaving’s CV was the lowest as compared to leaching and  
RDF and SRF. The autoclaving pre-treatment method reduced the  
CV significantly during the process. The densification rating for  
all these pre-treatment was also low because most of the time,  
these processes only involved the drying process of FW without  
further chemical processing or palletization. RDF and SRF  
sorting processes removed high moisture content of MSW from  
the fuel and limited the heavy metal inside the fuel (2 items  
reduction). Leaching pre-treatment was very effective for  
organic-based waste in removing alkali metal, such as K and Na,  
which were presented as water soluble salt in biomass and organic  
wastes (62) and also able to reduce FW acidity (63) (the effect of  
alkali properties of water). Moisture content was also reduced at  
the end of this process. Autoclaving pre-treatment scored the  
maximum point for the reduction of four items in the FW. These  
four items included alkali metal, volatile matter (during  
thermochemical dehydration), moisture content, and heavy metal.  
It is known that some heavy metal such as Cadmium (Cd), Copper  
By comparing all these technologies, the leaching pre-  
treatment technology is a less explored method for FW pre-  
treatment process. The chemical reaction of water with FW can  
impact the changes in the chemical composition of FW. The  
changes in chemical composition of FW can produce cleaner flue  
gas emission and reduce slag tendencies. Pre-treatment of FW can  
also assist WTE to reduce its erosion problem and increase the  
energy production. It is recommended that leaching technology  
can be coupled with any other chemicals such as acid and other  
pre-treatment technologies to enhance its potential for better FW  
fuel production. The combination of FW pre-treatments, which  
includes torrefaction, leaching, and palletization, can easily  
obtain maximum scores for this study assessment as per Table 7.  
Furthermore, more pre-treatment methods can be integrated  
and combined into one system to solve the FW problems and  
management issues, therefore increasing the pre-treatment  
product value. Energy, Environment, and Economic (3E)  
assessment and Life Cycle Assessment (LCA) method can also  
be used to compare the best FW pre-treatment integration method  
to ensure the valorization of energy from FW is optimized and  
becomes impactful in the future.  
Currently, most of the incinerators do not have any FW pre-  
treatment system. This is due to the additional cost, which is  
required in the value enhancement process. The increasing cost of  
FW pre-treatment can be compensated by the increase in  
efficiency and its energy density enhancement. Pre-treatment of  
FW can become a future technology for sustainable waste  
management, especially for WTE incineration. Since the  
generation of FW increases every year with the increasing global  
population and many other factors, now is the best time to  
consider the benefits of treated FW and its value improvement.  
(
Cu), Nickel (Ni), and Zinc (Zn) are contained inside FW and  
reduced after the autoclaving process (40). This is due to the  
autoclaving process that uses high pressure and temperature to  
sterile the FW and converts it into a fiber-like material (40).  
Thermally assisted bio-drying was the lowest rated  
technology in this study. This is due to the focus of this method  
that is only to reduce the moisture content of fuel. The CV for this  
method was only a bit higher than the raw FW. For energy  
densification criteria, bio-drying performed slightly higher than  
raw FW and did not really have a significant impact. The process  
time for this method was also longer than other FW pre-  
treatments.  
Overall, the result shows that there is no pre-treatment  
achieve full total score in this study. The comparison of FW pre-  
treatment methods suggests for torrefaction and HTC to become  
the main pre-treatment processes for FW. However the initial cost  
and other research gap need to be filled to understand and increase  
Acknowledgments  
The author would like to acknowledge TNB Research Sdn  
Bhd (TNBR) and Universiti Kebangsaan Malaysia (UKM) for  
research funding.  
145  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 139-147  
the Technologies for Food Waste Treatment. Energy Procedia  
Ethical issue  
[Internet].  
2017;105:391521.  
Available  
from:  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
http://dx.doi.org/10.1016/j.egypro.2017.03.811  
1
4. Ayodele TR, Ogunjuyigbe ASO, Alao MA. Life cycle assessment of  
waste-to-energy (WtE) technologies for electricity generation using  
municipal solid waste in Nigeria. Appl Energy [Internet].  
(
avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
submitted work is original and has not been published elsewhere  
in any language.  
2017;201:20018.  
Available  
from:  
http://dx.doi.org/10.1016/j.apenergy.2017.05.097  
1
1
5. Mes TZD De, Stams AJM, Reith JH, Zeeman G. Methane production  
by anaerobic digestion of wastewater and solid.  
6. Ma J, Zhang L, Mu L, Zhu K, Li A. Thermally assisted bio-drying of  
food wasteꢀ: Synergistic enhancement and energetic evaluation.  
Waste Manag [Internet]. 2018;80:32738. Available from:  
https://doi.org/10.1016/j.wasman.2018.09.023  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
1
7. Hajinezhad A, Halimehjani EZ, Tahani M. Utilization of Refuse-  
Derived Fuel (RDF) from Urban Waste as an Alternative Fuel for  
Authors’ contribution  
All authors of this study have a complete contribution for data  
collection, data analyses and manuscript writing.  
Cement Factory: a Case Study. Int  
EZHalimehjani al. 2016;6(2).  
J Renew ENERGY Res  
18. Budiman A, Budhijanto W, Pradana YS, Majid AI, Sudibyo H,  
Deendarlianto. Technological Evaluation of Municipal Solid Waste  
Management System in Indonesia. Energy Procedia [Internet].  
References  
2
017;105:2639.  
Available  
from:  
1
.
Congress I. Gustavsson J. et all 2(2011)Global Food Losses and Food  
Waste Extent, Causes and Prevention.  
http://dx.doi.org/10.1016/j.egypro.2017.03.312  
19. Moh YC, Manaf LA. Resources , Conservation and Recycling  
Overview of household solid waste recycling policy status and  
challenges in Malaysia. "Resources, Conserv Recycl [Internet].  
2
.
Girotto F, Alibardi L, Cossu R. Food waste generation and industrial  
uses: A review. Waste Manag [Internet]. 2015;45:3241. Available  
from: http://dx.doi.org/10.1016/j.wasman.2015.06.008  
2014;82:5061.  
Available  
from:  
3
4
.
.
FAO. Food loss prevention in perishable crops - I [Internet]. FAO  
Corporate Document Repository. 1981. 27 p. Available from:  
http://www.fao.org/docrep/s8620e/S8620E04.htm  
http://dx.doi.org/10.1016/j.resconrec.2013.11.004  
20. Leckner B. Process aspects in combustion and gasification Waste-to-  
Energy (WtE) units. Waste Manag [Internet]. 2015;37:1325.  
Available from: http://dx.doi.org/10.1016/j.wasman.2014.04.019  
21. Moora H, Roos I, Kask U, Kask L, Ounapuu K. Determination of  
biomass content in combusted municipal waste and associated CO2  
emissions in Estonia. Energy Procedia [Internet]. 2017;128:2229.  
Available from: https://doi.org/10.1016/j.egypro.2017.09.059  
Chu MM. Generating more waste than ever. The Star [Internet]. 2019  
Jul  
Available  
30;https://www.thestar.com.my/news/nation/2019/07/30/.  
from:  
https://www.thestar.com.my/news/nation/2019/07/30/generating-  
more-waste-than-ever  
5
6
.
.
Periathamby A, Hamid FS, Khidzir K. Evolution of solid waste  
management in Malaysia: Impacts and implications of the solid waste  
bill, 2007. J Mater Cycles Waste Manag. 2009;11(2):96103.  
Pauze M, Mohamad BIN. Plastic waste composition & Solid waste  
Generation in Malaysia. Hotel Royale Chulan Damansara, Selangor,  
Malaysia: Waste Management Association Malaysia (WMAM);  
22. Zhang D, Huang G, Xu Y, Gong Q. Waste-to-energy in China: Key  
challenges and opportunities. Energies. 2015;8(12):1418296.  
23. Tong H, Shen Y, Zhang J, Wang CH, Ge TS, Tong YW. A  
comparative life cycle assessment on four waste-to-energy scenarios  
for food waste generated in eateries. Appl Energy [Internet].  
2018;225(May):114357.  
Available  
from:  
2
019. p. 10.  
https://doi.org/10.1016/j.apenergy.2018.05.062  
7
.
Tan S, Hashim H, Lee C, Taib MR, Yan J. Economical and  
environmental impact of waste-T o-energy (WTE) alternatives for  
waste incineration, landfill and anaerobic digestion. Energy Procedia  
24. Sovacool BK, Drupady IM. Innovation in the Malaysian Waste-to-  
Energy Sector: Applications with Global Potential. Electr J.  
2011;24(5):2941.  
[
Internet].  
2014;61:7048.  
Available  
from:  
25. Chien Bong CP, Ho WS, Hashim H, Lim JS, Ho CS, Peng Tan WS,  
et al. Review on the renewable energy and solid waste management  
policies towards biogas development in Malaysia. Renew Sustain  
Energy Rev [Internet]. 2017;70(July 2015):98898. Available from:  
http://dx.doi.org/10.1016/j.rser.2016.12.004  
26. Tong H, Yao Z, Lim JW, Mao L, Zhang J, Ge TS, et al. Harvest green  
energy through energy recovery from waste: A technology review  
and an assessment of Singapore. Renew Sustain Energy Rev  
[Internet]. 2018;98(September 2017):16378. Available from:  
https://doi.org/10.1016/j.rser.2018.09.009  
http://dx.doi.org/10.1016/j.egypro.2014.11.947  
Rahman HA. Incinerator In Malaysia: Really Needsꢀ? Int J Chem  
Environ Biol Sci. 2013;1(4):67881.  
AlQattan N, Acheampong M, Jaward FM, Ertem FC, Vijayakumar  
N, Bello T. Reviewing the potential of Waste-to-Energy (WTE)  
technologies for Sustainable Development Goal (SDG) numbers  
seven and eleven. Renew Energy Focus [Internet]. 2018;27(00):97–  
8
9
.
.
1
10. Available from: https://doi.org/10.1016/j.ref.2018.09.005  
1
1
1
0. Moult JA, Allan SR, Hewitt CN, Berners-Lee M. Greenhouse gas  
emissions of food waste disposal options for UK retailers. Food  
Policy [Internet]. 2018;77(November 2017):508. Available from:  
https://doi.org/10.1016/j.foodpol.2018.04.003  
1. Pahla G, Ntuli F, Muzenda E. Torrefaction of landfill food waste for  
possible application in biomass co-firing. Waste Manag [Internet].  
27. Beyene HD, Werkneh AA, Ambaye TG. Current updates on waste to  
energy (WtE) technologies:  
[Internet]. 2018;24(March):111.  
http://dx.doi.org/10.1016/j.ref.2017.11.001  
a
review. Renew Energy Focus  
Available from:  
28. Abdul Samad NAF, Jamin NA, Saleh S. Torrefaction of Municipal  
Solid Waste in Malaysia. Energy Procedia [Internet]. 2017;138:313–  
8. Available from: https://doi.org/10.1016/j.egypro.2017.10.106  
29. Poudel J, Ohm TI, Oh SC. A study on torrefaction of food waste. Fuel  
2
018;71(2017):51220.  
Available  
from:  
https://doi.org/10.1016/j.wasman.2017.10.035  
2. Tan ST, Hashim H, Lim JS, Ho WS, Lee CT, Yan J. Energy and  
emissions benefits of renewable energy derived from municipal solid  
waste: Analysis of a low carbon scenario in Malaysia. Appl Energy  
[Internet].  
2015;140:27581.  
Available  
from:  
http://dx.doi.org/10.1016/j.fuel.2014.09.120  
[
Internet].  
http://dx.doi.org/10.1016/j.apenergy.2014.06.003  
3. Gao A, Tian Z, Wang Z, Wennersten R, Sun Q. Comparison between  
2014;136:797804.  
Available  
from:  
30. Huang J, Qiao Y, Wei X, Zhou J, Yu Y, Xu M. Effect of torrefaction  
on steam gasification of starchy food waste. Fuel.  
2019;253(March):155664.  
1
146  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 139-147  
3
3
1. Kaushik R, Parshetti GK, Liu Z, Balasubramanian R. Enzyme-  
assisted hydrothermal treatment of food waste for co-production of  
hydrochar and bio-oil. Bioresour Technol [Internet]. 2014;168:267–  
countermeasures. Prog Energy Combust Sci [Internet]. 2016;52:1–  
61. Available from: http://dx.doi.org/10.1016/j.pecs.2015.09.003  
47. Subramani A, Jayanti S. On the occurrence of two-stage combustion  
in alkali metals. Combust Flame [Internet]. 2011;158(5):10007.  
7
4. Available from: http://dx.doi.org/10.1016/j.biortech.2014.03.022  
2. Wang T, Zhai Y, Zhu Y, Gan X, Zheng L, Peng C, et al. Evaluation  
of the clean characteristics and combustion behavior of hydrochar  
derived from food waste towards solid biofuel production. Bioresour  
Technol [Internet]. 2018;266(May):27583. Available from:  
https://doi.org/10.1016/j.biortech.2018.06.093  
Available  
from:  
http://dx.doi.org/10.1016/j.combustflame.2011.01.023  
48. Wu D, Wang YY, Wang YY, Li S, Wei X. Release of alkali metals  
during co-firing biomass and coal. Renew Energy [Internet].  
2016;96:917.  
Available  
from:  
3
3. Li L, Diederick R, Flora JRV, Berge ND. Hydrothermal  
carbonization of food waste and associated packaging materials for  
http://dx.doi.org/10.1016/j.renene.2016.04.047  
49. Zhang J, Han CL, Yan Z, Liu K, Xu Y, Sheng CD, et al. The varying  
characterization of alkali metals (Na, K) from coal during the initial  
stage of coal combustion. Energy and Fuels. 2001;15(4):78693.  
50. Arena U, Di F. Gasification of a solid recovered fuel in a pilot scale  
fluidized bed reactor. Fuel [Internet]. 2014;117:52836. Available  
from: http://dx.doi.org/10.1016/j.fuel.2013.09.044  
51. Gillespie GD, Everard CD, Fagan CC, McDonnell KP. Prediction of  
quality parameters of biomass pellets from proximate and ultimate  
analysis. Fuel [Internet]. 2013;111:7717. Available from:  
http://dx.doi.org/10.1016/j.fuel.2013.05.002  
52. Novianti S, Zaini IN, Nurdiawati A, Yoshikawa K. Low Potassium  
Content Pellet Production by Hydrothermal-Washing Co-treatment.  
Int J Chem Chem Eng Syst. 2016;1:2838.  
53. Resource Futures. Material bulk densities. wrap Mater Chang a better  
Environ [Internet]. 2010;ROT039(January 2010):13. Available from:  
http://www2.wrap.org.uk/downloads/Bulk_Density_Summary_Rep  
ort_-  
energy  
source  
generation.  
Waste  
Available  
Manag  
[Internet].  
from:  
2
013;33(11):247892.  
http://dx.doi.org/10.1016/j.wasman.2013.05.025  
4. Sarc R, Lorber KE. Production , quality and quality assurance of  
Refuse Derived Fuels RDFs ). Waste Manag [Internet].  
013;33(9):182534. Available from:  
http://dx.doi.org/10.1016/j.wasman.2013.05.004  
3
3
(
2
5. Gendebien A, Leavens A, Black more K, Godley A, Lewin K,  
Whiting KJ, et al. Refuse derived fuel, current practice and  
perspectives. Final report. Curr Pract [Internet]. 2003;(July).  
Available http://bases.bireme.br/cgi-  
bin/wxislind.exe/iah/online/?IsisScript=iah/iah.xis&amp;src=google  
amp;base=REPIDISCA&amp;lang=p&amp;nextAction=lnk&amp  
exprSearch=33505&amp;indexSearch=ID  
from:  
&
;
3
3
3
6. Chang CC, Chen YH, Lin YS, Hung ZS, Yuan MH, Chang CY, et al.  
A pilot plant study on the autoclaving of food wastes for resource  
recovery and reutilization. Sustain. 2018;10(10):114.  
_Jan2010.cd53525b.8525.pdf%0Ahttp://www.wrap.org.uk/sites/file  
s/wrap/Bulk Density Summary Report - Jan2010.pdf  
54. Yuan J, Li Y, Wang G, Zhang D, Shen Y, Ma R, et al. Biodrying  
performance and combustion characteristics related to bulking agent  
amendments during kitchen waste biodrying. Bioresour Technol  
7. Piao G, Aono S, Mori S, Deguchi S, Fujima Y, Kondoh M, et al.  
Combustion of refuse derived fuel in  
999;18(1998):50912.  
a
fluidized bed.  
1
8. Anca-couce A, Brunner T, Kanzian W, Obernberger I, Trattner K.  
Characterization and condensation behaviour of gravimetric tars  
produced during spruce torrefaction. J Anal Appl Pyrolysis [Internet].  
[Internet].  
2019;284(January):5664.  
Available  
from:  
https://doi.org/10.1016/j.biortech.2019.03.115  
2
016;119:1739.  
Available  
from:  
55. Nhuchhen D, Basu P, Acharya B. A Comprehensive Review on  
Biomass Torrefaction. Int J Renew Energy Biofuels. 2014;2014:1–  
56.  
56. Białowiec A, Micuda M, Koziel JA. Waste to carbon: Densification  
of torrefied refuse-derived fuel. Energies. 2018;11(11).  
http://dx.doi.org/10.1016/j.jaap.2016.02.020  
3
4
4
4
4
4
9. Chen W, Liu S, Juang T, Tsai C, Zhuang Y. Characterization of solid  
and liquid products from bamboo torrefaction q. Appl Energy  
[Internet].  
2015;160:82935.  
Available  
from:  
http://dx.doi.org/10.1016/j.apenergy.2015.03.022  
0. Ibrahim N, Yusoff D, Aziz H. Food Waste Characteristics after  
57. Mohammed M, Ozbay I, Karademir A, Isleyen M. Pre-treatment and  
utilization of food waste as energy source by bio-drying process.  
Energy Procedia [Internet]. 2017;128:1007. Available from:  
https://doi.org/10.1016/j.egypro.2017.09.021  
58. Lu L, Namioka T, Yoshikawa K. Effects of hydrothermal treatment  
on characteristics and combustion behaviors of municipal solid  
wastes. Appl Energy [Internet]. 2011;88(11):365964. Available  
from: http://dx.doi.org/10.1016/j.apenergy.2011.04.022  
Autoclaving Treatment. … Biotechnol Food Sci … [Internet].  
2
011;7:547. Available from: http://www.ipcbee.com/vol7/13-  
ICBFS2011S055.pdf  
1. Pham TPT, Kaushik R, Parshetti GK, Mahmood R, Balasubramanian  
R. Food waste-to-energy conversion technologies: Current status and  
future directions. Waste Manag [Internet]. 2015;38(1):399408.  
Available from: http://dx.doi.org/10.1016/j.wasman.2014.12.004  
2. Fakkaew K, Koottatep T, Polprasert C. Effects of hydrolysis and  
carbonization reactions on hydrochar production. Bioresour Technol  
59. Chew KW, Chia SR, Yap YJ, Ling TC, Tao Y, Show PL.  
Densification of food waste compost: Effects of moisture content and  
dairy powder waste additives on pellet quality. Process Saf Environ  
[Internet].  
2015;192:32834.  
Available  
from:  
Prot  
[Internet].  
2018;116:7806.  
Available  
from:  
http://dx.doi.org/10.1016/j.biortech.2015.05.091  
https://doi.org/10.1016/j.psep.2018.03.016  
3. Chen X, Ma X, Peng X, Lin Y, Yao Z. Conversion of sweet potato  
waste to solid fuel via hydrothermal carbonization. Bioresour  
Technol [Internet]. 2018;249(381):9007. Available from:  
https://doi.org/10.1016/j.biortech.2017.10.096  
4. Novianti S, Nurdiawati A, Zaini IN, Prawisudha P, Sumida H,  
Yoshikawa K. Low-potassium Fuel Production from Empty Fruit  
Bunches by Hydrothermal Treatment Processing and Water  
Leaching. Energy Procedia [Internet]. 2015;75:5849. Available  
from: http://dx.doi.org/10.1016/j.egypro.2015.07.460  
60. Demirbas A. Combustion characteristics of different biomass fuels.  
Prog Energy Combust Sci. 2004;30(2):21930.  
61. Lim M, Zulkifli AZS, Hassan H. Biomass combustion: Potassium and  
sodium flame emission spectra and composition in ash. Nihon  
Enerugi Gakkaishi/Journal Japan Inst Energy. 2017;96(9):36771.  
62. Shoulaifar TK, Demartini N, Zevenhoven M, Verhoe F, Kiel J. Ash-  
Forming Matter in Torre fi ed Birch Wood: Changes in Chemical  
Association. 2013;  
63. RedCorn R, Fatemi S, Engelberth AS. Comparing End-Use Potential  
for Industrial Food-Waste Sources. Engineering [Internet].  
4
4
5. Vassilev S V., Baxter D, Andersen LK, Vassileva CG. An overview  
of the chemical composition of biomass. Fuel [Internet].  
2018;4(3):37180.  
Available  
from:  
2
010;89(5):91333.  
Available  
from:  
https://doi.org/10.1016/j.eng.2018.05.010  
http://dx.doi.org/10.1016/j.fuel.2009.10.022  
6. Niu Y, Tan H, Hui S. Ash-related issues during biomass combustion:  
Alkali-induced slagging, silicate melt-induced slagging (ash fusion),  
agglomeration,  
corrosion,  
ash  
utilization,  
and  
related  
147