Journal of Environmental Treatment Techniques
2021, Volume 9, Issue 1, Pages: 139-147
3
3
1. Kaushik R, Parshetti GK, Liu Z, Balasubramanian R. Enzyme-
assisted hydrothermal treatment of food waste for co-production of
hydrochar and bio-oil. Bioresour Technol [Internet]. 2014;168:267–
countermeasures. Prog Energy Combust Sci [Internet]. 2016;52:1–
61. Available from: http://dx.doi.org/10.1016/j.pecs.2015.09.003
47. Subramani A, Jayanti S. On the occurrence of two-stage combustion
in alkali metals. Combust Flame [Internet]. 2011;158(5):1000–7.
7
4. Available from: http://dx.doi.org/10.1016/j.biortech.2014.03.022
2. Wang T, Zhai Y, Zhu Y, Gan X, Zheng L, Peng C, et al. Evaluation
of the clean characteristics and combustion behavior of hydrochar
derived from food waste towards solid biofuel production. Bioresour
Technol [Internet]. 2018;266(May):275–83. Available from:
https://doi.org/10.1016/j.biortech.2018.06.093
Available
from:
http://dx.doi.org/10.1016/j.combustflame.2011.01.023
48. Wu D, Wang YY, Wang YY, Li S, Wei X. Release of alkali metals
during co-firing biomass and coal. Renew Energy [Internet].
2016;96:91–7.
Available
from:
3
3. Li L, Diederick R, Flora JRV, Berge ND. Hydrothermal
carbonization of food waste and associated packaging materials for
http://dx.doi.org/10.1016/j.renene.2016.04.047
49. Zhang J, Han CL, Yan Z, Liu K, Xu Y, Sheng CD, et al. The varying
characterization of alkali metals (Na, K) from coal during the initial
stage of coal combustion. Energy and Fuels. 2001;15(4):786–93.
50. Arena U, Di F. Gasification of a solid recovered fuel in a pilot scale
fluidized bed reactor. Fuel [Internet]. 2014;117:528–36. Available
from: http://dx.doi.org/10.1016/j.fuel.2013.09.044
51. Gillespie GD, Everard CD, Fagan CC, McDonnell KP. Prediction of
quality parameters of biomass pellets from proximate and ultimate
analysis. Fuel [Internet]. 2013;111:771–7. Available from:
http://dx.doi.org/10.1016/j.fuel.2013.05.002
52. Novianti S, Zaini IN, Nurdiawati A, Yoshikawa K. Low Potassium
Content Pellet Production by Hydrothermal-Washing Co-treatment.
Int J Chem Chem Eng Syst. 2016;1:28–38.
53. Resource Futures. Material bulk densities. wrap Mater Chang a better
Environ [Internet]. 2010;ROT039(January 2010):13. Available from:
http://www2.wrap.org.uk/downloads/Bulk_Density_Summary_Rep
ort_-
energy
source
generation.
Waste
Available
Manag
[Internet].
from:
2
013;33(11):2478–92.
http://dx.doi.org/10.1016/j.wasman.2013.05.025
4. Sarc R, Lorber KE. Production , quality and quality assurance of
Refuse Derived Fuels RDFs ). Waste Manag [Internet].
013;33(9):1825–34. Available from:
http://dx.doi.org/10.1016/j.wasman.2013.05.004
3
3
(
2
5. Gendebien A, Leavens A, Black more K, Godley A, Lewin K,
Whiting KJ, et al. Refuse derived fuel, current practice and
perspectives. Final report. Curr Pract [Internet]. 2003;(July).
Available http://bases.bireme.br/cgi-
bin/wxislind.exe/iah/online/?IsisScript=iah/iah.xis&src=google
amp;base=REPIDISCA&lang=p&nextAction=lnk&
exprSearch=33505&indexSearch=ID
from:
&
;
3
3
3
6. Chang CC, Chen YH, Lin YS, Hung ZS, Yuan MH, Chang CY, et al.
A pilot plant study on the autoclaving of food wastes for resource
recovery and reutilization. Sustain. 2018;10(10):1–14.
_Jan2010.cd53525b.8525.pdf%0Ahttp://www.wrap.org.uk/sites/file
s/wrap/Bulk Density Summary Report - Jan2010.pdf
54. Yuan J, Li Y, Wang G, Zhang D, Shen Y, Ma R, et al. Biodrying
performance and combustion characteristics related to bulking agent
amendments during kitchen waste biodrying. Bioresour Technol
7. Piao G, Aono S, Mori S, Deguchi S, Fujima Y, Kondoh M, et al.
Combustion of refuse derived fuel in
999;18(1998):509–12.
a
fluidized bed.
1
8. Anca-couce A, Brunner T, Kanzian W, Obernberger I, Trattner K.
Characterization and condensation behaviour of gravimetric tars
produced during spruce torrefaction. J Anal Appl Pyrolysis [Internet].
[Internet].
2019;284(January):56–64.
Available
from:
https://doi.org/10.1016/j.biortech.2019.03.115
2
016;119:173–9.
Available
from:
55. Nhuchhen D, Basu P, Acharya B. A Comprehensive Review on
Biomass Torrefaction. Int J Renew Energy Biofuels. 2014;2014:1–
56.
56. Białowiec A, Micuda M, Koziel JA. Waste to carbon: Densification
of torrefied refuse-derived fuel. Energies. 2018;11(11).
http://dx.doi.org/10.1016/j.jaap.2016.02.020
3
4
4
4
4
4
9. Chen W, Liu S, Juang T, Tsai C, Zhuang Y. Characterization of solid
and liquid products from bamboo torrefaction q. Appl Energy
[Internet].
2015;160:829–35.
Available
from:
http://dx.doi.org/10.1016/j.apenergy.2015.03.022
0. Ibrahim N, Yusoff D, Aziz H. Food Waste Characteristics after
57. Mohammed M, Ozbay I, Karademir A, Isleyen M. Pre-treatment and
utilization of food waste as energy source by bio-drying process.
Energy Procedia [Internet]. 2017;128:100–7. Available from:
https://doi.org/10.1016/j.egypro.2017.09.021
58. Lu L, Namioka T, Yoshikawa K. Effects of hydrothermal treatment
on characteristics and combustion behaviors of municipal solid
wastes. Appl Energy [Internet]. 2011;88(11):3659–64. Available
from: http://dx.doi.org/10.1016/j.apenergy.2011.04.022
Autoclaving Treatment. … Biotechnol Food Sci … [Internet].
2
011;7:54–7. Available from: http://www.ipcbee.com/vol7/13-
ICBFS2011S055.pdf
1. Pham TPT, Kaushik R, Parshetti GK, Mahmood R, Balasubramanian
R. Food waste-to-energy conversion technologies: Current status and
future directions. Waste Manag [Internet]. 2015;38(1):399–408.
Available from: http://dx.doi.org/10.1016/j.wasman.2014.12.004
2. Fakkaew K, Koottatep T, Polprasert C. Effects of hydrolysis and
carbonization reactions on hydrochar production. Bioresour Technol
59. Chew KW, Chia SR, Yap YJ, Ling TC, Tao Y, Show PL.
Densification of food waste compost: Effects of moisture content and
dairy powder waste additives on pellet quality. Process Saf Environ
[Internet].
2015;192:328–34.
Available
from:
Prot
[Internet].
2018;116:780–6.
Available
from:
http://dx.doi.org/10.1016/j.biortech.2015.05.091
https://doi.org/10.1016/j.psep.2018.03.016
3. Chen X, Ma X, Peng X, Lin Y, Yao Z. Conversion of sweet potato
waste to solid fuel via hydrothermal carbonization. Bioresour
Technol [Internet]. 2018;249(381):900–7. Available from:
https://doi.org/10.1016/j.biortech.2017.10.096
4. Novianti S, Nurdiawati A, Zaini IN, Prawisudha P, Sumida H,
Yoshikawa K. Low-potassium Fuel Production from Empty Fruit
Bunches by Hydrothermal Treatment Processing and Water
Leaching. Energy Procedia [Internet]. 2015;75:584–9. Available
from: http://dx.doi.org/10.1016/j.egypro.2015.07.460
60. Demirbas A. Combustion characteristics of different biomass fuels.
Prog Energy Combust Sci. 2004;30(2):219–30.
61. Lim M, Zulkifli AZS, Hassan H. Biomass combustion: Potassium and
sodium flame emission spectra and composition in ash. Nihon
Enerugi Gakkaishi/Journal Japan Inst Energy. 2017;96(9):367–71.
62. Shoulaifar TK, Demartini N, Zevenhoven M, Verhoe F, Kiel J. Ash-
Forming Matter in Torre fi ed Birch Wood: Changes in Chemical
Association. 2013;
63. RedCorn R, Fatemi S, Engelberth AS. Comparing End-Use Potential
for Industrial Food-Waste Sources. Engineering [Internet].
4
4
5. Vassilev S V., Baxter D, Andersen LK, Vassileva CG. An overview
of the chemical composition of biomass. Fuel [Internet].
2018;4(3):371–80.
Available
from:
2
010;89(5):913–33.
Available
from:
https://doi.org/10.1016/j.eng.2018.05.010
http://dx.doi.org/10.1016/j.fuel.2009.10.022
6. Niu Y, Tan H, Hui S. Ash-related issues during biomass combustion:
Alkali-induced slagging, silicate melt-induced slagging (ash fusion),
agglomeration,
corrosion,
ash
utilization,
and
related
147