Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 158-163  
J. Environ. Treat. Tech.  
ISSN: 2309-1185  
Journal web link: http://www.jett.dormaj.com  
https://doi.org/10.47277/JETT/9(1)163  
Treatment of Wastewater from Pulp and Paper Mill  
using Coagulation and Flocculation  
1
1
2
Balpreet Kaur *, Rajeev Kumar Garg , Anirudh Pratap Singh  
1
Department of Chemical Engineering, ShaheedBhagat Singh State Technical Campus, Ferozepur, Punjab, India  
2
Dean, Punjab Technical University, Jalandhar, Punjab, India  
Received: 10/06/2020  
Accepted: 21/10/2020  
Published: 20/03/2021  
Abstract  
In this work, an effluent sample from a local medium-scale paper mill has been treated using alum as a coagulant and chitosan (natural  
polymer) as a flocculant. Initially, the dose of alum has been optimized by adjusting the zeta potential to near zero for best coagulation  
results. The dose of 0.04 g/L was able to merely coagulate and unable to cause sweep flocculation of impurities. Then, at the optimised  
dose of 0.04 g/L various concentrations of chitosan in the range of 0.1-0.5 g/L were investigated for obtaining maximum flocculation of the  
suspended impurities. The physico-chemical parameters like pH, total suspended solids (TSS), chemical oxygen demand (COD),  
absorbance, and zeta potential were studied for comprehending the flocculation behavior. The observed results exhibited that the maximum  
flocculation was achieved at the chitosan concentration of 0.3 g/L. At the flocculant concentration of 0.3 g/L, 81% TSS removal and  
maximum 78% COD were reduced. Moreover, zeta potential value of the collected supernatant was close to zero (1.49 mV) which  
showed larger floc formation and easy settleability of the impurities. In all, it can be said that the utilization of chitosan along with alum  
may be a better option for the treatment of pulp and paper wastewater as well as other similar types of wastewater.  
Keywords: Pulp and paper mill waste water; coagulation-flocculation; chitosan; zeta potential; COD  
1
life of aquatic beings like zooplankton and fish is adversely  
affected due to release of toxic chemicals.  
1
Introduction  
The environmental pollution due to the activities of small  
The use of cleaner technologies and incorporating  
modifications in the process design can potentially reduce the  
pollutant load from industrial wastewater. Nevertheless, waste  
generation cannot be completely eliminated. Therefore,  
alternative techniques need to be introduced which can meet the  
prescribed discharge limits for most affecting pollutants like  
COD, BOD, AOX, color, turbidity, etc. [9, 10]. In this respect,  
chemical coagulation and flocculation offer a promising solution  
to waste water treatment facilities [11]. In this technique salts of  
selective metals are added to wastewater which initially  
neutralize the charge on impurities and subsequently  
agglomerate them into larger flocs which can be easily removed  
by settling. The factors affecting the effectiveness of these  
techniques are the nature of coagulating agent, dose of  
coagulant, pH of solution, concentration, and nature of  
impurities present in wastewater. Generally, the pulp and paper  
mill effluents consist of many non-biodegradable, hydrophobic,  
and polar compounds specifically phenols, lignin, long-chain  
fatty acids, resinous acids, and aromatic compounds [12].  
Almost all of these toxic compounds can be effectively removed  
through coagulation followed by flocculation.  
and medium-scale pulp and paper industries is  
multidimensional, causing serious problems not only to land  
fertility but also to the natural flora fauna as well as aquatic  
environment. The pulp and paper industry generates about 70-  
3
1
20 m of wastewater per metric ton of paper produced [1, 2].  
Pulping is the initial step in paper making involving mechanical  
or chemical treatment of raw material. It is widely used for the  
separation of cellulose/hemi-cellulose fibers for attaining  
improvement in its papermaking properties [3]. Further,  
bleaching is carried out in multistage processes to remove the  
residual lignin and hence achieve whiteness and brightness in  
the pulp [4]. Both these steps are highly energy-intensive  
consuming enormous volumes of freshwater and involving  
usage of large quantities of chemicals which consequently affect  
the properties of discharged effluents [5]. Various studies  
authenticate the harmful and undesirable impacts of these  
chemicals [6-8]. These effluents have been responsible for  
generating color problems, algal growth, and scum formation  
which hamperthe aesthetic looks of the environment.Also the  
In the past, many synthetic flocculants e.g. (PAM, HE, PEI)  
for precipitation of suspended impurities of paper mill waste  
water have been used [13]. The precipitated products obtained  
after the application of these flocculants have not been fully  
analyzed for degradation. It is expected that the precipitates are  
*
Corresponding author: Balpreet Kaur, Department of  
Chemical Engineering, Shaheed Bhagat Singh State Technical  
Campus, Ferozepur, Punjab, India. Email:  
balpreet_kaur@yahoo.com  
158  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 158-163  
difficult to biodegrade as most of the flocculants are inorganic in  
nature or synthetic or polymeric materials which are itself  
difficult to biodegrade [14]. Chitosan a natural polymer obtained  
after partial deacetylation of chitin (biopolymer) has immense  
potential as a flocculant for wastewater treatment and sludge  
dewatering, as it is non-toxic, biodegradable, biocompatible and  
environment friendly [15-19]. Renault et al. [20] examined the  
flocculation behavior of cardboard mill wastewater collected  
after biological treatment with aerated lagoons using  
polyaluminium chloride (PAC) and chitosan solution.  
Flocculation tests indicated a drop of about 45% in COD and  
Table 1: Chemical Characteristics of the wastewater collected  
from the paper mill  
Parameters  
COD (mg/L)  
pH  
Value  
2816  
6.51  
TSS (mg/L)  
2029  
-40  
0.8  
Zeta Potential (mV)  
Dissolved Oxygen (ppm)  
2
.1.1 Preparation of chitosan (bio-flocculant) solution  
Chitosan powder (0.125 g) was accurately weighed in a 250  
ml volumetric flask and mixed thoroughly with 12.5 ml HCL  
0.1M) solution and kept for one hour. The dissolution was slow  
and some amount of chitosan remained in the form of a thin gel.  
It was then diluted to 250 ml with water to obtain a 0.5 g/L  
chitosan (CH) solution. After further dilutions five different  
concentrations (0.1, 0.2, 0.3, 0.4 and 0.5 g/L) of chitosan  
solution were prepared. The solutions were freshly prepared  
before each set of experiments.  
~
65% in turbidity with PAC flocculant. On the other hand,  
flocculation using chitosan dissolved in acetic acid displayed a  
comparatively higher drop in COD (~80%) and turbidity  
(
(
~85%). Picos-Corrales et al. [21] studied the effect of chitosan  
and bean straw flour as bio-flocculants in the treatment of  
agricultural wastewater. Results from jar tests confirmed the  
higher efficiency of chitosan in the removal of pollutants and  
reducing the concentration of undesirable metals like manganese  
and iron from wastewater. However, both the materials  
performed better than the commercially available  
polyaluminium chloride coagulant. Altaher et al. [22] studied the  
effect of chitosan as a supporting coagulant along with  
conventional alum for sea water treatment. The combination of  
both (chitosan 5 mg/L and alum 13.5 mg/L) was effective in  
2
.2 Analytical methods  
COD tests were conducted on the supernatant collected after  
treatment of water sample with chitosan solution of various  
concentrations using closed reflux titrimetric method based on  
the APHA manual. To measure the charge on colloidal particles  
in waste water solutions NICOMP 380 ZLS (NICOMP Zeta  
potential/Particle Sizer, Santa Barbara, CA, USA) was used.  
The absorbance of various samples was recorded on UV-Vis  
double beam spectrophotometer (UV 5704SS), by Electronics  
Corporation of India. Samples were filtered with a glass filter  
before analysis using a quartz cuvette. pH meter (Eutech,  
Singapore) was used to measure the pH of all solutions. pH  
meter was calibrated with buffer solutions of pH 4, pH 7, and  
pH 9 before actual measurements. Magnetic stirrer model Remi,  
India was used for proper mixing of solutions. The total  
suspended solids (TSS) were evaluated with the use of standard  
filter paper (Whatman 42) and the residue retained on the filter  
was dried to a constant weight at 103 to 105 °C for 1 hr. The  
increase in weight of the filter represented the total suspended  
solids.  
4
reducing the turbidity from 1×10 to 10 NTU. Meraz et al. [23]  
investigated the behavior of two different molecular weights of  
chitosan on the coagulation-flocculation efficiency of tortilla  
industry waste water. Both the variants with dose less than 3 g/L  
were successful in lowering the turbidity of water by 80% with  
pH of 5.5 maintained in the solution.  
In the present study, chitosan is being used as a flocculant  
along with alum as a coagulant for the removal of suspended  
impurities from pulp and paper mill waste water. For a particular  
dose of alum, varying concentrations of bio-flocculant chitosan  
were examined for maximum removal of suspended and  
colloidal impurities from wastewater. Zeta potential of the  
supernatant before and after treatment with alum/chitosan was  
used as  
a yardstick for evaluating each procedure and  
understanding the colloidal behavior of suspended particles  
there in. Further, the reduction in the COD of waste water with  
addition of different concentrations of chitosan was determined.  
Also, the TSS, absorbance and pH of each solution before and  
post treatment with chitosan solution was investigated.  
3
Experimental section  
Five conical flasks of 250 ml capacity with 100 ml of  
wastewater sample in each were arranged for experimental  
study. Alum dose of 0.04 g/L was added to each flask. To ensure  
uniform mixing the mixtures were stirred at 140 rpm for 2  
minutes. Then, 100 ml of chitosan solution of different  
concentrations (0.1, 0.2, 0.3, 0.4, and 0.5 g/L) was respectively  
added to five flasks and stirred thoroughly for 30 minutes at 40  
rpm. It was kept undisturbed for half an hour for the settling of  
flocs. The pH was determined at this stage for each treated water  
sample. The supernatant was analyzed for investigating the  
various physico-chemical characteristics such as pH, COD, zeta  
potential, absorbance, and TSS.  
2
Materials and methods  
2
.1 Materials  
Wastewater was collected from the water treatment plant of  
a medium scale, agro residue, and recycle based paper mill in  
Punjab, India (details are not given due to confidentiality) with a  
production capacity of 200 tons/day. The major products  
produced by the mill are mechanical pulp, paper and board. The  
waste water samples collected were characterized and the results  
are given in Table 1. The measurement of these parameters was  
based on Standard Methods for the Examination of Water and  
Wastewater  
AlK(SO .12H  
[24]. sulfate  
Aluminum  
potassium  
4
)
2
2
O
(purity 99.9%, AR grade), used as  
a
4
Results and discussion  
The mechanism involved in coagulation by alum follows  
coagulant in the study was purchased from CDH Pvt Ltd., India.  
Chitosan powderwas sourced from India Sea Foods, Cochin  
with ash content of 0.05%.  
two steps. Firstly, the positively charged hydroxyl groups  
attached to aluminum neutralize negatively charged particles  
159  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 158-163  
present as impurities in waste water via adsorption and also  
affect their zeta potential. Besides, they also lower or remove the  
DLVO (Derjaguin, Landau, Verwey, and Overbeek) energy  
barrier. However, this step depends upon the dose of alum and  
the pH of the solution. In the second step, when the alum dose  
exceeds 0.03 g/L, the sweep flocculation starts predominating.  
Though there is no specific value for zeta potential that ensures  
effective coagulation for any waste water treatment plant, still  
value lying between -4 and +3 mV offers an optimum range for  
efficient coagulation [25]. For determining of the optimum dose  
of alum for coagulation of colloids of present water sample  
following experimentation was done.  
4.2 Effect of chitosan concentration on zeta potential  
Zeta potentials of the supernatants obtained from various  
samples after treatment with different concentrations of chitosan  
(0.1-0.5 g/L) were recorded and the results are summed in Table  
3.  
Table 3: Variation in zeta potential of waste water with  
variation in chitosan concentration  
CH concentration (g/L)  
Zeta potential (mV)  
0
0
.0(only alum)  
.1  
-8  
-12  
0.2  
-7.26  
-1.49  
+3.45  
+5.16  
0.3  
4
.1 Effect of alum dose on zeta potential  
00 ml of waste water sample was individually filled in four  
conical flasks. Different amount of alum dose such as 0.02 g/L,  
.03 g/L, 0.04 g/L, and 0.05 g/L was added to each flask. The  
0.4  
1
0.5  
0
solutions were stirred at 140 rpm for 2 min. Thereafter, the zeta  
potential of each solution was measured. The values obtained  
are presented in Table 2 and the observed results are shown in  
Fig. 1.  
Table 2: Variation in zeta potential of waste water samples with  
variation in alum dose  
Alum dose (g/L)  
Zeta potential (mV)  
0
0
0
0
.02  
.03  
.04  
.05  
-31.82  
-19.49  
-3.72  
+15.23  
Figure 2: Effect of chitosan concentration on zeta potential  
From this table, it can be observed that the addition of alum  
of 0.04 g/L of water sample led to the decrease in value of its  
zeta potential to -3.72 mV and it is expected that at this  
concentration the maximum coagulation must have occurred.  
Various reports available in literature corroborate the fact that at  
maximum coagulation occurred at zeta potential ranging from -4  
to +3 mV [25-27].  
Fig. 2 shows the effect of various doses of chitosan on zeta  
potential of water sample. It was noticed that with increasing  
dose of chitosan, the zeta potential of the wastewater gradually  
changed from more negative to less negative and then shifted to  
a positive value. Analyzing the flocculation behavior of the  
samples it was observed that maximum flocculation occurred  
when the value of zeta potential was almost near to zero (-1.49  
mV) and the corresponding CH concentration was 0.3 g/L.  
Further increase in CH concentration enhanced the zeta potential  
which may be attributed to excess adsorption of chitosan on the  
colloidal impurities leading to charge reversal. Similar results  
have been reported in the literature [28, 29].  
4
.3 Effect of chitosan concentration on pH  
pH was monitored for all samples and the results are  
presented in Table 4. It has been observed that as the  
concentration of chitosan increases, the pH of the solution shows  
a dropping trend but not in a much wide range. This may be due  
to preparation of CH solution in acidic medium in which  
chitosan acts a cationic bio-polymer owing to the presence of  
plentiful amine groups. The pK  
which depends upon its degree of deacetylation. In general,  
when pH of solution exceeds pK (chitosan) it does not dissolve  
in water and if pH value is less than pK (chitosan), amine  
, subsequently increasing  
a
for chitosan is typically ~6.5,  
a
Figure 1: Variation in zeta potential of waste water with variation in  
alum dose  
a
+
3
groups get protonated to form -NH  
attraction towards negatively charged impurities present in  
waste water [30, 31]. Further, at higher alkalinity, there is a  
160  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 158-163  
reasonable tendency of deprotonation of the hydroxyl groups to  
generate negatively charged species. Thus, the pH for all the  
samples was maintained below 6.5. Fig. 3 depicts the decline in  
pH with CH concentration. The values signify that all the CH  
concentrations possess the capability to bridge with the  
impurities and the typical value of pH for optimum CH  
concentration is 0.3 g/L is 6.08.  
flocculant are phenol (~220 nm), aromatic compounds (254 nm),  
and compounds derived from lignin (~280 nm) [32]. The highest  
absorbance was exhibited by the sample with 0.3 g/L chitosan  
concentration.  
Table 5: Variation in COD of water samples with addition of  
different concentrations of chitosan  
CH concentration  
g/L)  
untreated waste water 2816  
COD value  
COD reduction  
(%)  
---  
63.8  
68.5  
71.7  
Table 4: Variation in pH of the water samples with variation in  
chitosan concentration  
(
(mg O /L)  
2
CH concentration (g/L)  
pH of solution  
0.0 (only alum)  
1019  
0
0
0
.1  
.2  
.3  
6.47  
6.37  
6.08  
0.1  
0.2  
885  
795  
0.3  
0.4  
0.5  
616  
684  
951  
78.1  
75.7  
66.2  
0
0
.4  
.5  
5.96  
5.89  
Figure 4: Percentage reduction in COD with varying chitosan  
concentration  
Figure 3: Variation in the pH of the solutions with variation in chitosan  
concentration  
4
.4 Effect of chitosan concentration on COD  
The COD values of the untreated and treated effluents  
(
water samples) were determined as per the methodology  
mentioned in section 2.2.1. The untreated effluent has a COD  
value of 2816 mg of O /L and the COD values and  
2
corresponding reduction after treatment with varying  
concentrations of chitosan are presented in Table 5. Fig. 4 shows  
the trend in COD reduction post chitosan treatment. The  
treatment with CH solution (0.1 g/L) reduces the COD by 68.5%  
and a further increase in CH concentration enhances COD  
reduction up to CH concentration of 0.3 g/L [29].  
4
.5 Effect of chitosan concentration on absorbance  
UV-Visible absorption spectra of the chitosan treated  
effluent samples analyzed in the region of 200-600 nm are  
shown in Fig. 5. A noticeable reduction in absorbance in the  
region of 250-300 nm is observed by all the samples, indicating  
the presence of lignin-based compounds responsible for  
imparting dark color to the liquid effluent which gets adsorbed  
in this region. The major compounds absorbed by the bio-  
Figure 5: UV-Vis spectrum of wastewater with varying concentrations of  
chitosan  
161  
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 158-163  
4
.6 Effect of chitosan concentration on TSS  
it led to reduction in removal percentage of TSS. This behavior  
may be attributed to the reversal of surface charge leading to  
restabilization of the coagulated particles. This may be further  
explained due to the unavailability of sites for bridge formation by  
polymers, resulting in steric repulsion [34].  
Suspended impurities not only hamper the color and brightness  
of processed water but also affect its texture and promote the  
growth of slime. For this reason, the waste water sample after  
treatment with chitosan was analyzed for TSS removal. The TSS  
values thus obtained and their corresponding removal percentage  
are presented in Table 6. It can be noticed that as the chitosan  
concentration is increased, the total suspended particle removal  
rate also improves, but after a certain dose of chitosan (0.3 g/L) the  
TSS removal rate drops.  
5
Conclusions  
The treatment of pulp and paper mill waste water has been  
attempted with conventional coagulant alum and a natural  
biodegradable polymeric flocculant, chitosan. The alum dose was  
optimized through zeta potential measurement which was found to  
be 0.04 g/L. Maximum reduction in COD was obtained at chitosan  
concentration of 0.3 g/L and a further increase in dose did not  
improve the reduction efficiency. Also, a decrease in absorbance  
was observed in the UV-Vis spectra in the range of 200-300 nm for  
all the samples indicating the absorption of phenolics, lignin, and  
other aromatics in this wavelength region. Further, the TSS was  
reduced when the chitosan dose was increased stepwise. The  
maximum removal efficiency was exhibited at CH concentration of  
Table 6: Variation in the TSS of water sample with variation in  
chitosan concentration  
CH concentration (g/L) ) TSS  
TSS removal (%)  
(
mg/L)  
0
0
0
0
0
.1  
.2  
.3  
.4  
.5  
515  
25  
31  
81  
78  
76  
627  
1635  
1587  
1550  
0.3 g/L in the solution. Besides, with the increasing dose of  
chitosan (0.1 to 0.5 g/L), the zeta potential of the sample gradually  
changed from negative to near zero and then shifted to positive. At  
high doses of chitosan, the sign of zeta potential is reversed due to  
excess adsorption of chitosan on the negatively charged colloidal  
impurities. At the flocculant concentration of 0.3 g/L, maximum  
81% TSS and maximum 78% COD were reduced. Overall it can be  
said that the utilization of chitosan along with alum may be a better  
option for the treatment of pulp and paper wastewater as well as  
other similar types of wastewater.  
Acknowledgments  
The authors want to acknowledge ShaheedBhagat Singh State  
technical campus, Ferozepur for providing instrumental  
facilities.  
Ethical issue  
Authors are aware of, and comply with, best practice in  
publication ethics specifically with regard to authorship  
(
avoidance of guest authorship), dual submission, manipulation  
of figures, competing interests and compliance with policies on  
research ethics. Authors adhere to publication requirements that  
submitted work is original and has not been published elsewhere  
in any language.  
Figure 6: Percentage TSS removal with varying concentration of  
chitosan  
Fig. 6 shows that the removal efficiencies of TSS with chitosan  
Competing interests  
The authors declare that there is no conflict of interest that  
would prejudice the impartiality of this scientific work.  
flocculant are attained upto 81%. The removal rate of contaminant  
particles from waste water is proportional to the number of  
particles (N), time (t), and the fraction of successful collisions  
(
). It can be determined from the following equation:  
Authors’ contribution  
All authors of this study have a complete contribution for  
data collection, data analyses and manuscript writing.  
dN  
dt  
2
K (N)  
References  
where K is the mixed rate constant [28]. From the above equation,  
it is quite rational that higher the collision frequency between the  
coagulant and/or flocculant and suspended particles better would  
be the coagulation-flocculation process. The high efficiency of CH  
concentration of 0.3 g/L in the TSS removal may be due to the high  
collision frequency between the chitosan and suspended solid  
particles [33]. However, as the chitosan dose was further increased,  
[
1] Hubbe MA, Metts JR, Hermosilla D, Blanco MA, Yerushalmi L,  
Haghighat F, et al. Wastewater treatment and reclamation: A review  
of pulp and paper industry practices and opportunities.  
Bioresources. 2016;11:7953-8091.  
[2] Thapliyal B, Tyagi S. Water pinch analysisan innovative approach  
towards water conservation in pulp and paper industry. IPPTA.  
2
015;27:59-66.  
162  
 
 
Journal of Environmental Treatment Techniques  
2021, Volume 9, Issue 1, Pages: 158-163  
[
3] Pokhrel D, Viraraghavan T. Treatment of pulp and paper mill  
wastewater and river water via flocculation using chitosan and bean  
straw flour as bioflocculants. ACS omega. 2020;5:3943-51.  
[22] Altaher H. The use of chitosan as a coagulant in the pre-treatment  
of turbid sea water. Journal of Hazardous Materials. 2012;233:97-  
102.  
wastewatera review. Science of the Total Environment.  
2
004;333:37-58.  
[4] Ghosh U. Short sequence environment friendly bleaching of wheat  
straw pulp.Journal of Scientific and Industrial Research.  
2
006;65(01):68-71.  
[23] Meraz KAS, Vargas SMP, Maldonado JTL, Bravo JMC, Guzman  
MTO, Maldonado EAL. Eco-friendly innovation for nejayote  
coagulationflocculation process using chitosan: Evaluation through  
zeta potential measurements. Chemical Engineering Journal.  
2016;284:536-42.  
[
5] Kaur D, Bhardwaj NK, Lohchab RK. A study on pulping of rice  
straw and impact of incorporation of chlorine dioxide during  
bleaching on pulp properties and effluents characteristics. Journal of  
Cleaner Production. 2018;170:174-82.  
[
[
[
6] González-García S, Hospido A, Moreira MT, Romero J, Feijoo G.  
Environmental impact assessment of total chlorine free pulp from  
Eucalyptus globulus in Spain. Journal of Cleaner Production.  
[24] APHA AW, W. Standard methods for the examination. Water and  
Wastewater 20th ed, American Public Health Association,  
Washington, DC. 2000.  
[25] Amirtharajah A, Clark MM, Trussell RR. Mixing in coagulation  
and flocculation: AWWA research foundation, Colarado; 1991.  
[26] Kim TH, Park C, Kim S. Comparison of disperse and reactive dye  
removals by chemical coagulation and Fenton oxidation. Journal of  
Hazardous Materials. 2004;112:95-103.  
[27] Barzegari Z, Bina B, Pourzamani H, Ebrahimi A. The combined  
treatment of bisphenol A (BPA) by coagulation/flocculation (C/F)  
process and UV irradiation in aqueous solutions. Desalination and  
Water Treatment. 2016;57:8802-8.  
[28] Wong S, Teng T, Ahmad A, Zuhairi A, Najafpour G. Treatment of  
pulp and paper mill wastewater by polyacrylamide (PAM) in  
polymer induced flocculation. Journal of Hazardous Materials.  
2006;135:378-88.  
[29] Solberg D, Wågberg L. Adsorption and flocculation behavior of  
cationic polyacrylamide and colloidal silica. Colloids and Surfaces  
A: Physicochemical and Engineering Aspects. 2003;219:161-72.  
[30] Bhalkaran S, Wilson LD. Investigation of self-assembly processes  
for chitosan-based coagulant-flocculant systems: A mini-review.  
International Journal of Molecular Sciences. 2016;17:1662.  
[31] Aili D, Feraoun I, Adour L, Lounici H. Use of dispersed and beads  
chitosan in liquid effluents treatment. Process Engineering Journal.  
2017; 2:41-51.  
[32] Aravind U, George B, Baburaj M, Thomas S, Thomas A,  
Aravindakumar C. Treatment of industrial effluents using  
polyelectrolyte membranes. Desalination. 2010;252:27-32.  
[33] Hassan MAA, Hui LS, Noor ZZ. Removal of boron from industrial  
wastewater by chitosan via chemical precipitation. Journal  
of Chemical and Natural Resources Engineering. 2009;4:1-11.  
[34] Weber WJ. Physiochemical processes for water qualitycontrol.  
Wiley, New York, 1972.  
2
009;17:1010-6.  
7] Mark Hewitt L, Parrott JL, McMaster ME. A decade of research on  
the environmental impacts of pulp and paper mill effluents in  
Canada: sources and characteristics of bioactive substances. Journal  
of Toxicology and Environmental Health, Part B. 2006;9:341-56.  
8] McMaster ME, Mark Hewitt L, Parrott JL. A decade of research on  
the environmental impacts of pulp and paper mill effluents in  
Canada: field studies and mechanistic research. Journal of  
Toxicology and Environmental Health, Part B. 2006;9:319-39.  
9] Ali M, Sreekrishnan T. Aquatic toxicity from pulp and paper mill  
[
[
[
effluents: A review. Advances in Environmental Research.  
001;5:175-96.  
2
10] Lacorte S, Latorre A, Barcelo D, Rigol A, Malmqvist A, Welander  
T. Organic compounds in paper-mill process waters and effluents.  
TrAC Trends in Analytical Chemistry. 2003;22:725-37.  
11] Loganathan P, Gradzielski M, Bustamante H, Vigneswaran S.  
Progress, challenges, and opportunities in enhancing NOM  
flocculation using chemically modified chitosan: A review towards  
future development. Environmental Science: Water Research &  
Technology. 2020;6:45-61.  
[
12] Ferasat Z, Panahi R, Mokhtarani B. Natural polymer matrix as safe  
flocculant to remove turbidity from kaolin suspension: Performance  
and governing mechanism. Journal of Environmental Management.  
2
020;255:109939.  
[
13] Xiuli Z, Fengshan Z, Wenxiu S. Treatment of paper making  
wastewater with polyaluminum chloride-polyacrylamide composite  
flocculant. Industrial Water Treatment-Tianjin 2005;25:36.  
[
14] Ngo H-H, Guo W. Membrane fouling control and enhanced  
phosphorus removal in an aerated submerged membrane bioreactor  
using modified green bioflocculant. Bioresource Technology.  
2
009;100:4289-91.  
[
[
[
15] Lichtfouse E, Morin-Crini N, Fourmentin M, Zemmouri H, do  
Carmo Nascimento IO, Queiroz LM, et al. Chitosan for direct  
bioflocculation of wastewater. Environmental Chemistry Letters.  
2
019:1-19.  
16] Morin-Crini N, Lichtfouse E, Torri G, Crini G. Applications of  
chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture,  
textiles, pulp and paper, biotechnology, and environmental  
chemistry. Environmental Chemistry Letters. 2019:1-26.  
17] Kanmani P, Aravind J, Kamaraj M, Sureshbabu P, Karthikeyan S.  
Environmental applications of chitosan and cellulosic biopolymers:  
A comprehensive outlook. Bioresource Technology. 2017;242:295-  
3
03.  
[18] Desbrières J, Guibal E. Chitosan for wastewater treatment. Polymer  
International. 2018;67:7-14.  
[19] Vidal R, Moraes J. Removal of organic pollutants from wastewater  
using chitosan:  
a literature review. International Journal of  
Environmental Science and Technology. 2019;16:1741-54.  
20] Renault F, Sancey B, Charles J, Morin-Crini N, Badot P-M,  
Winterton P, et al. Chitosan flocculation of cardboard-mill  
secondary biological wastewater. Chemical Engineering Journal.  
[
2
009;155:775-83.  
[
21] Picos-Corrales LA, Sarmiento-Sꢀnchez JI, Ruelas-Leyva JP, Crini  
Gg, Hermosillo-Ochoa E, Gutierrez-Montes JA. Environment-  
friendly approach toward the treatment of raw agricultural  
163