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Abstract 
The assessment of daily discharges at the Tarbela Dam is one of the major concerns for the reservoir operational team. As per record, 

the existing model used by Tarbela Dam Project (TDP) Engineers has not been reliably estimating the inflows to the reservoir as 

compared to those obtained from the reservoir operational data. This paper explores the development of a new hydrologic model using 

regression techniques. For this, four years of representative data for the period from 2013 to 2016 were obtained for daily inflows at four 

gauging stations namely, Indus river at Tarbela, Indus river at Besham Qila, Siran river near Phulra, and Brandu iver near Daggar. Both 

multiple linear regression (MLR) and multiple nonlinear regression (MNLR) were performed to develop models taking inflows at 

Tarbela as the response variable and inflows at the remaining three upstream-gauging stations as the explanatory variables. Based on 

several statistical measures and the visual inspection of the testing models, the MNLR provided a better representation of the relationship 

between the Tarbela inflows and the upstream-gauging stations' inflows. The best-fit nonlinear model declared the inflows at Besham as 

the most influential explanatory variable followed by the inflows at Phulra, while eliminating those at Daggar, suggesting that the inflows 

to Tarbela can effectively be estimated without the inclusion of Daggar inflows. The outcomes of the newly developed nonlinear model 

are considerably better in comparison to those of the existing model used by TDP Engineers. This study is helpful for the reservoir 

operational team to estimate the daily flows based on upstream-gauging stations data; it is recommended to update the model to estimate 

inflows to the reservoir for every three to four years. 
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1 Introduction1 
Developing a hydrological model for a reservoir plays an 

important role in finding out the solutions toward problems 

related to water and environmental resource management such 

as forecasting of hydrological events [1] and groundwater level 

forecasting [2]. Although various new methods are used for 

hydrologic forecasting purposes such as the wavelet transforms 

[3] and hybrid wavelet-artificial intelligence models [4], the 

regression technique is still considered as one the most widely 

used yet simple and reliable methods for hydrological modeling. 

Also, the demand for using inexpensive models is greatly 

evolved over the last decade to come up with simple models 

requiring a limited number of parameters [5]. For example, 

with the help of only upstream data, Pizarro-Tapia et al. [6] 

calibrated and validated the linear and nonlinear models to 

estimate downstream flooding in two Mediterranean river 

basins in Chile.  

Like other developing countries in the Asia-Pacific region, 

Pakistan is facing water crises. As Pakistan is an agricultural 

country and therefore for better management of water, proper 

strategies should be made that encompass the prediction of 

discharges for important hydraulic structures such as the 

Tarbela reservoir. Tarbela Dam is being maintained and 

operated by Tarbela Dam Project (TDP), whereas distributaries 

of the Indus River are operated by the Indus River System 

Authority (IRSA). The inflow coming to Tarbela is measured 
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at three tributaries: Indus River at Besham Qila, Siran river near 

Phulra, and Brandu river near Daggar (see Fig. 1). Among these 

three, the major contribution in the inflows to Tarbela is that of 

Besham Qila—a gauging station about 65 km above the top end 

of the reservoir—which is about 93% of the Indus River flow 

to the reservoir [7]. The inflow at Tarbela reservoir is measured 

through the use of a simple ‘storage change and outflow’ 

equation on daily basis, given in Eq. (1):  

 

𝑇 =
𝜕𝑆

𝜕𝑡
+ 𝑂                   (1) 

 

where 𝑇 is the inflow at Tarbela from the reservoir data, 𝜕𝑆/𝜕𝑡 

is the storage change of the reservoir per day and is obtained 

from the elevation area capacity curves or tables and 𝑂 

represents the total daily outflows measured at the outlets of the 

dam. Also, the TDP Engineers estimate the inflow at Tarbela 

from three upstream-gauging stations data as illustrated in [8]; 

their equation is termed herein as the existing model, given in 

Eq. (2): 

 

𝑇 = 𝐵 + 2(𝑃 + 𝐷)     (2) 

 

where 𝑇 is the Tarbela inflow, 𝐵 is the Indus river discharge at 

Besham Qila lagged by 7 hours, 𝑃 is the Siran river discharge 

near Phulra lagged by 6 hours and 𝐷  is the Brandu river 
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discharge near Daggar lagged by 6 hours. The representatives 

of TDP are bound to release water following the indents placed 

by IRSA, as the irrigation water has priority over other uses 

(including the power generation) as per Water Apportionment 

Accord (WAA) 1991 [9]. Eq. (2) as per record is not reliable 

and truly applicable as it undergoes great temporal variation 

between the estimated and the actual-observed discharges. This 

was the main complaint of IRSA that the inflows estimated by 

TDP Engineers (Eq. (2)) do not match well with those 

calculated from outflows and storage change in the reservoir 

(Eq. (1)) [10].  Similarly, a recent study by Ullah et al [11] 

conducted an artificial neural network (ANN) on seasonal flow 

data from the year 2015 to 2019 for forecasting water 

discharges for the Tarbela dam. However, these authors neither 

presented the simulated flows with the observed ones nor 

presented the models in mathematical or statistical form. 

Moreover, the equations obtained through the ANN method are 

susceptible to the over-fitting problem due to their complex 

network structure [12]. Hence, it is necessary to develop a 

regression-based model to yield reliable and accurate results for 

estimating inflows at Tarbela based on recently recorded 

upstream-gauging stations data. 

The existing literature review proposes that hydrological 

modeling be investigated in such a way as to obtain results 

closest to the observed data and that the model should remain 

inexpensive in terms of parameters i.e., there should be the least 

model complexity. The development of such models is possible 

with the help of regression analysis. To the best of our 

knowledge, very few studies are available for the case, where 

hydrologic models are developed for the prediction of inflows 

to Tarbela reservoir such as the HBV model application to the 

upper basins of Indus river for forecasting inflows to Tarbela 

dam [13]. However, these types of models need several input 

parameters such as precipitation observations, temperature data, 

and long-term estimates of potential evapotranspiration, which 

increase the complexity of the model. Also, such models are 

useless in case of the unavailability of the precipitation and 

temperature data as a result of the poor working conditions of 

the meteorological stations. In addition, the Tarbela reservoir 

itself is facing significant issues among which the delta deposits 

is of prime concern since the reservoir has already lost its 

storage capacity up to 40.58% due to the high influx of the 

sediments from the Upper Indus Baisn [14]. On the other hand, 

the demand for water for either electricity generation or 

irrigation purposes is increasing on daily basis: a recent paper 

by Amin et al [15] revealed that the future water demand in the 

Upper Indus Basin by 2050, is predicted to be more than double 

as compared with that in 2015. To cope with such 

aforementioned issues of Tarbela reservoir, the estimation of 

inflows to Tarbela has investigated herein the current research 

work, based on upstream-gauging stations data comprising 

discharge values only. This was achieved by applying both 

Multiple Linear Regression (MLR) and Multiple Nonlinear 

regression (MNLR) to model inflows to Tarbela for the gauging 

station's data of 4 years (2013-2016). Different statistical 

measures were computed for assessing the model performance 

of the newly developed regression-based equations. Finally, the 

simulated and observed inflows to the reservoir were visually 

inspected through scatter plots and time series plots. 

 

2 Study Area 
Tarbela Dam is an earth- and rock-fill dam along the Indus 

river, situated mainly in Sawabi and partly in the Haripur 

district of Khyber Pukhtunkhwa, Pakistan with Latitude: 

34◦05′23” N, Longitude: 72◦41′54” E. The main dam is about 

105 km northwest of Islamabad having a length of 274 m and 

a height of 143 m [10]. The upstream of Tarbela reservoir 

constitutes an area of 169650 km2, of which 90% lies between 

the Karakoram and Himalaya ranges [7, 16]. Due to the high 

elevation of the Indus basin, most of the precipitations occur in 

the form of ice and snow, which result in the formation of 

glaciers. The major part of the 80% inflow into the Indus river 

is due to the melting of these glaciers [9, 17]. According to 

reports, the average annual inflow to the Tarbela reservoir is 81 

BCM [18]. This inflow is mainly contributed by three major 

tributaries: Indus river at Besham Qila, Siran river near Phulra, 

and Brandu river near Daggar. According to the report 

published by Surface Water Hydrology Project (SWHP), the 

drainage areas of the Indus river at  Besham Qila, Siran river 

near Phulra, and Brandu river near Daggar are 162393 km2, 

1057 km2, and 599 km2, respectively [19].  

 

 
Figure 1: Google map of Tarbela Reservoir 

 

3 Methodology 
To develop a new hydrologic model for the Tarbela 

reservoir, representative inflows at stream gauging stations of 

Besham Qila, Phulra, and Daggar, and inflows measured at 

Tarbela were collected from the Surface Water Hydrology 

Project (SWHP) of Water and Power Development Authority 

(WAPDA) for the four years from January 2013 to December 

2016. After the collection of data, the first step was to 

computerize the data that was in the form of pictures. 

Minitab—a statistical tool for analyzing data—was used in the 

research work for easy retrieval and analysis of the data. Both 

correlation and regression were conducted to find out how the 

inflow at Tarbela would vary with the discharges at Besham 

Qila, Phulra, and Daggar.  

The strength of the correlation between the response 

variable and the individual explanatory variables was assessed 

using the Pearson correlation coefficient (r), which is a 

correlation-based statistical measure. The correlation 

coefficient can be either negative or positive, and it varies from 

-1 to +1, respectively; the negative and positive signs 

demonstrate the corresponding negative linear correlation and 

positive linear correlation [20, 21]. The formula for calculating 

the correlation coefficient is given by Eq. (3).  

 

𝑟 =
∑(𝑦𝑖 − 𝑦̅)(𝑥𝑖 − 𝑥̅)

√∑(𝑦𝑖 − 𝑦̅)2 ∑(𝑥𝑖 − 𝑥̅)2
                                                    (3) 
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where, 𝑦𝑖 is the observed values of the response variable; 𝑥𝑖 is 

the observed values of the explanatory variable; 𝑦̅ is the mean 

of observed 𝑦𝑖 values; and 𝑥̅ is the mean of observed 𝑥𝑖 values. 

Once the correlation was conducted, it was followed by 

regression, in which case both Multiple Linear Regression 

(MLR) and Multiple Nonlinear Regression (MNLR) were 

performed to develop a hydrologic model for estimating 

inflows to Tarbela reservoir. To examine the overall 

significance of a linear model, the global test (F-test) was 

conducted, whereas, for the individual significance of the 

explanatory variables to be evaluated, the p-value approach and 

the t-distribution were conducted. To assess the significance of 

the parameters for the case of the nonlinear models, the 95% 

Confidence Interval (95% CI) approach was used. The models 

were compared based on two statistical measures, one of which 

is the absolute error measure i.e., the Root Mean Square Error 

(RMSE), and second is the relative error measure known as 

Nash-Sutcliffe Efficiency (NSE). The Root Mean Square Error, 

as given in Eq. (4), is a nonnegative statistic having no upper 

bound and is widely used to demonstrate how far the fitted 

values are from the observed values of the response variable 

[22]. The RMSE gives better decision in that it describes the 

model performance in terms of units of the variable. The 

smaller the value of RMSE, the closer the data points fall to the 

fitted curve. The Nash-Sutcliffe Efficiency is a normalized 

statistic (given in Eq. (5)) that indicates how well the simulated 

values fit the observed values [23]. In other words, it 

demonstrates how well the plot of simulated versus observed 

data fits the 1:1 line. The N-SE ranges from negative infinity to 

1; the closer the value of N-SE to 1, the better is the model 

performance. 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑇𝑒𝑠𝑡 − 𝑇𝑜𝑏𝑠)2𝑁

𝑖=1

𝑁
                                                 (4) 

 

N − SE = 1 −
∑(𝑇𝑒𝑠𝑡 − 𝑇̅𝑜𝑏𝑠)2

∑(𝑇𝑜𝑏𝑠 − 𝑇̅𝑜𝑏𝑠)2
                                                 (5) 

 

where, 𝑇𝑒𝑠𝑡 is the estimated or simulated discharge, 𝑇𝑜𝑏𝑠 is the 

observed discharge, 𝑇̅𝑜𝑏𝑠  is the mean of observed discharge 

values, and N is the number of observed data entries. The best-

fit model was selected as the one having the least RMSE and 

highest N-SE. Besides, scatter plots containing trend lines and 

1:1 lines and the time-series graphs were used to assess the 

adequacy of the final-proposed model by comparing the 

simulated values with the observed data. The stepwise 

procedure for developing the regression-based hydrologic 

model is illustrated in Fig. 2. 

 

4 Results and Discussion 
4.1 Correlations 

In this section, the correlation was highlighted by assessing 

the association between the response and explanatory variables. 

As mentioned earlier in the Introduction Section that the major 

inflow to Tarbela is approaching through Besham Qila, and the 

same was observed by correlating the measured inflow at 

Tarbela (T) with that of each of the three upstream-gauging 

stations i.e., Besham Qila (B), Phulra (P), and Daggar (D) (see 

Fig. 3 and Table 1).  
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Figure 2: Methodology for development of regression-based hydrologic model 

 

 
Figure 3: Scatter plot matrix of B, P, D, and T for assessing the strength of correlations 

 

Table 1: Pearson correlation coefficient and p values: B, P, D, 

and T 

 B P D 

P 0.261 (0.000) — — 

D 0.160 (0.000) 0.391 (0.000) — 

T 0.982 (0.000) 0.311 (0.000) 0.179 (0.000) 

Pearson correlation coefficient, r 

Values in the brackets show the p-value 

 

From Fig. 3 and Table 1, it is clear that out of the three 

explanatory variables, B is the most influential with r of 

98.20%, while D is the least influential explanatory variable 

with r of 16%.  While P and D are not individually well-

correlated with T, they can contribute mildly in fitting the 

model when T is regressed on them in combination with B. It 

is also obvious from either the bottom-left corner or the top-

right corner diagram of Fig. 3 that the recorded discharges at 

Besham are greater than the recorded inflows to Tarbela 

(though Tarbela has a greater catchment). This is primarily due 

to the measurement errors at the gauging stations of Besham, 

as pointed out by [10, 13]. 

 

 

 

4.2 Multiple linear regression (MLR) 

Before developing a hydrologic model, the existing model 

given in Eq. (2) was analyzed; the average prediction error for 

this model is 266 Cumecs and this model overestimates the 

inflows by approximately 10%. The overestimation of inflows 

is obvious from Fig. 4 since the trend line is well above the 1:1 

line. This model was also analyzed by the experts of the Sixth 

Periodic Inspection of the Tarbela dam [10], in which case the 

results of the model were not matching well with the observed 

inflows for the year 2014 to 2016. The existing model (Eq. (2)) 

exhibits an RMSE of 657 Cumecs and an N-SE of 93.48%. 

However, at this stage, it is difficult to determine how large or 

small these values are. Even by looking at Fig. 4, it is difficult 

to demonstrate whether the deviation between the trend line and 

the 1:1 line is higher. The RMSE and N-SE along with the 

visual inspection using trend line and 1:1 line will be compared 

with those of the other models that are subsequently developed 

in this research. 

For model-building, a multiple linear regression was 

applied using the backward elimination method, meaning that 

the full model incorporating all the explanatory variables and 

the intercept term was established first, followed by successive 

deletion of the insignificant predictors one at a time, using t-

statistics and p-statistics. The model parameters were estimated 

based on minimizing the sum of squared errors (SSE)—the 
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procedure being known as the method of ordinary least squares. 

The newly developed model using multiple linear regression 

analysis is given in Eq. (6), which incorporates all the three 

explanatory variables along with an intercept: 

𝑇 = −27 + 0.85937𝐵 + 6.368𝑃 + 0.38𝐷                             (6) 

 

 
Figure 4: Scatter plot for comparing inflows from Eq. (2) and 

the observed flows 

 

As for assessing the adequacy of the model, it can be 

observed (see Table 2) that the RMSE of 453.080 Cumecs has 

been significantly reduced as compared with that of the existing 

model (Eq. (2)) having an RMSE of 657 Cumecs. Also, the N-

SE has been increased from 93.48% to 96.91%, indicating that 

the simulated values of Eq. (6) are fitting the observed values 

with comparatively higher accuracy. The overall significance 

of the model is checked based on the global F-test. Since the F-

value of the regression model is 13743.25, which is much 

higher than the critical F-value (Fcv) of 2.60; consequently, the 

model is significant overall. (Note that this value is based on 

critical F-distribution and is taken from Table A.6 of Walpole 

et al. [24]; similarly, the critical values of the t-distribution (tcv) 

are taken from Table A.4 of the same reference.) As for the 

individual contribution of the explanatory variables, two 

criteria are applied: the p-value approach and the t-distribution 

test. The p-value for both the constant term and D is above the 

critical significance level of pcv = 0.05, which means that these 

two terms showed no statically significant relationship with the 

response variable, T. Before running regression analysis, the 

variable D was discarded because of its statistical 

insignificance in the model (p-value = 0.761 > pcv = 0.05 and 

t-value = 0.30 < tcv = 1.96). This may mean that changing D 

has very little to no effect on changes in Tarbela inflow. The 

same is obvious from Fig.1 and its much smaller r-value of 

0.178 given in Table 1, confirming no linear relationship of it 

with T. Eliminating D will also help neglect the measurement 

of the least influential variable, D, suggesting (alternatively) 

that the concerned authority should give due importance to 

correctly measure the most influential variable, B. The 

resulting multiple linear models after excluding D are given in 

Eq. (7). 

 

𝑇 = −26.5 + 0.85947𝐵 + 6.435𝑃                           (7) 

 

From Table 3, it can be observed that there is no significant 

change in either the RMSE or N-SE as compared to those of Eq. 

(6). However, it is noticed that the constant term is statistically 

insignificant (p-value = 0.209 > 0.05 and t-value = -1.26 < 1.96). 

Hereafter, to reveal the effect of discarding the constant term 

on the model, the regression analysis was further performed 

without the incorporation of the intercept, and the following 

model resulted: 

 

𝑇 = 0.85747𝐵 + 6.009𝑃                                    (8) 

 

By looking at Table 4, it is shown that by dropping D and 

the constant term, a best-fit model was yielded as both the 

explanatory variables (B and P) are statistically significant in 

that their p-values and t-values are less than 0.05 and greater 

than 1.96, respectively. However, eliminating the constant term 

(and merely D) could lead us to lose information that may help 

explain the variance of and forecast the magnitudes of the 

response variable. This is also noticeable by the RMSE and N-

SE being not substantially changed as compared with the 

previous model i.e., Eq. (7). In sum, although Eq. (7) is 

equivalent to Eq. (6) and Eq. (8) in the viewpoint of almost 

equal N-SE and RMSE, it is the best fit model among all the 

linear models because it exhibited the least RMSE and highest 

N-SE value.  

 

Table 2: Regression results of Eq. (6) 

Term Coefficient t-value p-value 

Constant -27.0 -1.27 0.203 

B 0.85937 192.19 0.000 

P 6.368 10.78 0.000 

D 0.38 0.30 0.761 

S = 453.080 E = 0.969 F-value = 13743.25  
Fcv = 2.60, tcv = 1.96, pcv = 0.05 

 

Table 3: Regression results of Eq. (7). 

Term Coefficient t-value p-value 

Constant -26.5 -1.26 0.209 

B 0.85947 192.78 0.000 

P 6.435 11.72 0.000 

S = 452.277 E = 0.969 F-value = 20651.64  
Fcv = 3.00, tcv = 1.96, pcv = 0.05 

 

Table 4: Regression results of Eq. (8) 

Term Coefficient t-value p-value 

B 0.85747 205.86 0.000 

P 6.009 13.89 0.000 

S = 452.870 E = 0.969 F-value = 40475.51  
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Fcv = 3.84, tcv = 1.96, pcv = 0.05 

 

4.3 Multiple Nonlinear Regression (MNLR) 

It is well known that nonlinear models convey more 

information than do linear models. For the nonlinear regression 

analysis, instead of calculating the p-value and t-value for the 

individual parameter estimates, their significance was 

evaluated in terms of confidence intervals. And, for the overall 

significance of the nonlinear model, RMSE value is used like 

that used in the linear regression except the difference that the 

method for minimizing the SSE is based on iterative nonlinear 

least square regression [25, 26], at which point the normal 

equations for the nonlinear models comprise of partial 

derivatives of the nonlinear function for each of the regression 

parameters. Herein, a nonlinear model of the following form 

was used: 

 

𝑇 = 𝑎(𝐵𝑛1) (𝑃𝑛2) (𝐷𝑛3)                                    (9) 

 

From Table 5, it can be seen that the RMSE has been 

significantly reduced to 434.82 Cumecs as compared with 

452.277 Cumecs of the best fit-linear model (Eq. (7)), whereas 

the N-SE has been increased to 97.15% from 96.9%, indicating 

that the nonlinear model gave a better performance as 

compared with the linear models. Further, D is the least 

influential as indicated by the CI of n3, whose estimate is 

outside the range of 95% CI, suggesting that D should be 

terminated from the model; consequently, the following new 

model was constructed: 

 

𝑇 = 𝑎(𝐵𝑛1) (𝑃𝑛2)                                                                       (10) 

 

From Table 6, it can be observed that although all the 

parameters have their estimates in the range of their 

corresponding 95% CI, the model was further modified since 

the values of RMSE and N-SE were unaltered. The model was 

modified by adding an intercept and is given in Eq. (11). 

 

𝑇 = 𝑎1(𝐵𝑛1) (𝑃𝑛2) + 𝑎2                                    (11) 

 

It was found (see Table 7) that by adding an intercept (a2), 

a better model came up in terms of its least RMSE and 

enhanced N-SE of 428.379 Cumecs and 97.23%, respectively. 

This argument is also supported by the fact that a real-life 

process can include predictors that are not only multiplied but 

also accompanied by additive terms (an intercept). Hence, the 

additive term will also compensate for the inflows from Daggar. 

The higher value of N-SE indicated that the simulated vs. 

observed values are now close to the 1:1 line. This can also be 

seen from Fig. 5 that the deviation between the trend line and 

the 1:1 line has been significantly reduced as compared to that 

noted in Fig. 4.  

 

 
Figure 5: Scatter plot for comparing inflows from Eq. (11) 

and the observed inflows 

 

To have a visual intuition of the modeled and observed data, 

the time series plot (see Fig. 6) was developed showing the 

inflows based on the best-fit nonlinear model given by Eq. (11) 

and the observed inflows.  

 

Table 5:  Regression results of Eq. (9) 

Parameter Estimate  95% CI 

A 1.13704  (1.00797, 1.28002) 

n1 0.92200  (0.90780, 0.93643) 

n2 0.12671  (0.11150, 0.14186) 

n3 -0.00147  (-0.01152, 0.00847) 

S = 434.829                                     E = 0.971 

 

Table 6: Regression results of Eq. (10) 

Parameter Estimate  95% CI 

A 1.13841  (1.00974, 1.28090) 

n1 0.92194  (0.90777, 0.93635) 

n2 0.12572  (0.11207, 0.13930) 

S = 434.532                                       E = 0.971 

 

Table 7: Regression results of Eq. (11) 

Parameter Estimate  95% CI 

a1 0.533  (0.408, 0.693) 

n1 1.003  (0.974, 1.033) 

n2 0.126  (0.112, 0.140) 

a2 202.859  (143.296, 260.423) 

S = 428.379                                       E = 0.972 
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Figure 6: Time series plot for comparing the fitted inflow 

values of Eq. (11) with observed inflow values 

 

Fig. 6 illustrates that the modeled inflows closely matched 

the observed data over the four years from 2013 to 2016. 

However, it slightly underestimates the observed inflows at 

some peaks for the year 2015. This could be because of the 

measurement errors usually occurring at the gauging stations of 

Besham [10, 13]. Because of the discussion based on the 

regression analysis of all the testing models, Eq. (11) is chosen 

as the best-fit model for estimating the inflows to the Tarbela 

reservoir. 

 

5 Conclusions 
Discharge measured at Besham Qila is the most influential 

predictor whereas that measured at Daggar is the least 

influential predictor for the assessment of inflows to Tarbela 

reservoir. The proposed model, Eq. (11), has proved to be the 

best-fit nonlinear model since it yielded the least Root Mean 

Square Error (RMSE = 428.37 Cumecs) and highest Nash-

Sutcliffe Efficiency (N-SE = 97.23%), whereas the existing 

model given in Eq. (2) used by TDP resulted in higher Root 

Mean Square Error (RMSE = 657 Cumecs) and lower Nash-

Sutcliffe Efficiency (N-SE = 93.48%). The proposed model is 

given in Eq. (11) became helpful in resolving the conflict 

between Indus River System Authority (IRSA) and Tarbela 

Dam Project (TDP) Engineers for better management of Indus 

water. (Note that the existing model being used by TDP 

Engineers (Eq. (2)) was overestimating the inflows to Tarbela 

reservoir by 10%). It is recommended that the hydrologic 

model should be modified after every three to four years based 

on the latest observed inflows data at Tarbela dam. 
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